论文解读《Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment》
论文题目:Global Structure and Local Semantics-Preserved Embeddings for Entity Alignment
论文来源:IJCAI-20, Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu and Wei Zhang
论文地址:https://www.ijcai.org/Proceedings/2020/0506.pdf
代码链接:
1.解决的问题
以往都是通过实体的向量表示来对齐实体,主要有两类实体向量表示方法:
1)基于翻译模型的实体嵌入方法,利用局部语义信息来表示实体;
2)基于图神经网络的方法,利用全局结构信息来表示实体,这种全局信息集成了中心实体所有邻居的特征,拥有更强的综合性和可靠性,因为不容易丢失信息和不同知识图谱之间的模式异构性。
下图1中的两个实体New York(state)-纽约州和New York(city)-纽约城是两个不同的实体,实体对齐的过程只依靠局部语义信息或是全局结构信息是无法进行区分的,因为他们的邻居是完全相同的。值得注意的是,图中红字标识出的关系hasRiver和adjoin提供更细粒度的信息,如果能够同时考虑结构信息和局部语义信息考虑到实体的嵌入表示之中,这两个实体的嵌入向量就会出现差异。

这篇论文探讨了如何在实体对齐中结合全局结构信息和局部语义信息。通过全局结构保留网络(GCN)和基于语义信息的局部细化网络,论文提出了一种新的方法,以区分具有相似结构的实体。实验结果显示,这种方法在知识图谱的实体对齐任务中表现优越,证实了高速公路闸门和关系上下文嵌入的有效性。
最低0.47元/天 解锁文章
2253

被折叠的 条评论
为什么被折叠?



