要点:
1. 协同过滤
基于投票的规则,若某个用户组对某篇文章投票较多,则判断该用户组对该篇文章较感兴趣
2. 用户属于多组情况处理
若某个用户属于多个组,则采用加权平均的方式选取得分最高的文章进行推荐,权重系数利用逻辑回归确定。
w1(组的权重系数)*该组对某文章的投票率+w2*该组对某文章的投票率...
几个问题:
1. 某组的待推荐文章数如何确定,是固定的还是可变的,是学习出来的么?
应该是可变的,不同的组应该有不同的待推荐数
2. 用户的推荐文章数是学习出来的么?
应该是
要点:
1. 协同过滤
基于投票的规则,若某个用户组对某篇文章投票较多,则判断该用户组对该篇文章较感兴趣
2. 用户属于多组情况处理
若某个用户属于多个组,则采用加权平均的方式选取得分最高的文章进行推荐,权重系数利用逻辑回归确定。
w1(组的权重系数)*该组对某文章的投票率+w2*该组对某文章的投票率...
几个问题:
1. 某组的待推荐文章数如何确定,是固定的还是可变的,是学习出来的么?
应该是可变的,不同的组应该有不同的待推荐数
2. 用户的推荐文章数是学习出来的么?
应该是
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
640
9002
1512

被折叠的 条评论
为什么被折叠?