1. 获取用户评分矩阵(一种稀疏矩阵)
2. 对评分矩阵进行矩阵分解(采用最小二乘估计的方式)
Q矩阵表示用户对因子的偏好,P矩阵表示产品含有的因子
利用上述矩阵分解,可补全用户评分矩阵(近似)
3. 给出推荐结果
利用评分矩阵,推荐分数较高的产品(除掉已经有评分的)
本文详细介绍了基于最小二乘估计的矩阵分解方法,用于补全用户评分矩阵并推荐高评分电影。通过构建Q矩阵和P矩阵,实现了对未知评分的预测和推荐。
1. 获取用户评分矩阵(一种稀疏矩阵)
2. 对评分矩阵进行矩阵分解(采用最小二乘估计的方式)
Q矩阵表示用户对因子的偏好,P矩阵表示产品含有的因子
利用上述矩阵分解,可补全用户评分矩阵(近似)
3. 给出推荐结果
利用评分矩阵,推荐分数较高的产品(除掉已经有评分的)
您可能感兴趣的与本文相关的镜像
Stable-Diffusion-3.5
Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率
1031

被折叠的 条评论
为什么被折叠?