文本数据增强(data augmentation)nlpaug使用

环境

  • python==3.7
  • nlpaug==1.1.7

文档

https://nlpaug.readthedocs.io/en/latest/overview/overview.html
https://github.com/makcedward/nlpaug

安装

pip install numpy requests nlpaug

数据增强主要方式

https://zhuanlan.zhihu.com/p/150600950

nlpaug简单介绍

Support textual and audio input
针对文本数据增强,支持同义词替换、tfidf、拼写错误、随机删除插入、回译等。
详细见api 文档

https://nlpaug.readthedocs.io/en/latest/augmenter/augmenter.html

使用Demo

import nlpaug.augmenter.word as naw
from nlpaug.flow import Sometimes

# 增强时,会保持下面列表中的内容不变。
stopwords = ["love", "i"]
synonym_aug = naw.SynonymAug(stopwords=stop_words)
spelling_aug = naw.SpellingAug(stopwords=stop_words, aug_p=0.1)
# 将多种数据增强方式融合
aug = Sometimes([synonym_aug, spelling_aug])
text = "i love apple. i was born in 2000. how are you?"
r = aug.augment(text, 2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuhengshi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值