作业:决策树概念及算法公式

本文介绍了决策树的基本概念,包括其树形结构、特点和分类模型的构建。讨论了ID3、C4.5和CART算法,强调了信息增益和信息增益比在特征选择中的作用。同时,详细阐述了决策树剪枝的原理和两种策略——预剪枝和后剪枝,以及损失函数在剪枝过程中的应用。
摘要由CSDN通过智能技术生成

1.定义

        决策树(Decision Tree)是一种基本的分类和回归算法。该算法模型呈树形结构,主要由结点和有向边组成。结点又分为两种类型:内部结点和叶子结点。内部结点表示在一个属性或特征上的测试,每一个结点分枝代表一个测试输出,每一个叶子结点代表一个类别。决策树学习是以实例为基础的归纳学习

2.概念

        决策树就是一棵树,一颗决策树包含一个根节点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶子结点的路径对应了一个判定测试序列

3.特点

    (1)决策树是一种构建分类模型的非参数方法。换句话说,它不要求任何先验假设,不假定类和其他属性服从一定的概率分布。

      (2)已开发的构建决策树技术不需要昂贵的计算代价,即使训练集非常大,也可以快速建立模型。此外,决策树一旦建立,未知样本分类非常快,最坏情况下的时间复杂度是O(w), w为树的最大深度。

(3) 决策树相对容易解释,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值