#引入相关库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn import preprocessing
#读取数据
train_data=np.array(pd.read_csv("train.txt"))
test_data=np.array(pd.read_csv("test.txt"))
#提取特征列,即X (共18列,代表18个变量)
train_feature=np.array(train_data[:,[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]])
#提取预测结果列,即Y
train_label=np.array(train_data[:,[18]])
#提取测试集特征列
test_x=np.array(test_data[:,[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]])
print(test_data.shape)
#搭建神经网络
#定义x y
x = tf.placeholder(tf.float32,[None,18]) #长度为18,代表18个特征
y = tf.placeholder(tf.float32,[None,1]) #长度为1,代表要预测的变量只有1个
train_feature=preprocessing.scale(train_feature) #数据预处理,归一化
test_xs=preprocessing.scale(test_x) #也对测试集进行预处理
print(test_xs.shape)
#定义神经网络隐藏层
#初始化权值。 为18*20矩阵 20代表20个神经元
Weights_L1 = tf.Variable(tf.random_normal([18,20
Tensorflow基于神经网络进行多元变量回归分析
最新推荐文章于 2024-08-31 20:22:02 发布
本文详细介绍了如何利用Tensorflow构建神经网络模型,针对多元变量进行回归分析。通过实例展示了数据预处理、模型搭建、训练过程及结果评估,帮助读者掌握用深度学习解决复杂回归问题的方法。
摘要由CSDN通过智能技术生成