小波

本文概述了小波分析的定义、历史、核心概念及其在信号处理领域的优点。介绍了小波变换的实质,包括其在频率和时间轴上的优势、快速转换方法以及分离信号成分的能力。探讨了小波变换在不同领域的应用,如图像压缩、去噪等,并简述了其发展过程中的关键里程碑。
摘要由CSDN通过智能技术生成

摘自:http://zh.wikipedia.org/wiki/%E5%B0%8F%E6%B3%A2%E5%88%86%E6%9E%90

定义:wavelet是指小型波(在傅里叶分析里的弦波是大型波),简单说来,小波(wavelet)是一个衰减迅速的振荡。

小波函数:小波只有时域表示,作为小波函数 \psi (t)。例如墨西哥帽小波。

     

小波历史:
1909年: 第一个小波(Haar小波)由Alfred Haar提出
1981年: Jean Morlet提出小波概念
1984年: Morlet和 Grossman发明了"wavelet"一词
1985年: Meyer小波
1987年: 第一届国际研讨会在法国
1988年: Stephane Mallat和 Meyer 提出了多清晰度的概念
1988年: 多贝西小波
1989年: 快速小波转换 (FWT)
1990年代: 离散小波变换 (DWT)
1999年: 方向小波转换
2000年: JPEG2000

小波转换的优点:

1. 可以同时观察频率和时间轴,在频率高时有较好的时间清晰度,在频率低时有较好的频率清晰度。
2. 有快速小波转换可以加速运算。
3. 可以分离出信号的精细或粗糙成分。
4. 在小波理论中,可以用较少的小波系数去逼近一个函数。
5. 对信号去噪或压缩信号时,不会对信号造成明显的破坏。

小波变换的实质: 

小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值