一个长度为n的数组a[0],a[1],...,a[n-1]。现在更新数组的名个元素,即a[0]变为a[1]到a[n-1]的积,a[1]变为a[0]和a[2]到a[n-1]的积,...,a[n-1]为a[0]到a[n-2]的积。
程序要求: 要求具有线性复杂度;不能使用除法运算符。 |
对于数组a[n](长度为n,下标从0开始),如果按照题目要求就是a[i] = a[0]xa[1]x...xa[i-1]xa[i+1]x...xa[n-1],其中i属于[0, n)。
首先说明一点,这里不准用除法,也就是不要用求出数组所有元素的成绩然后除以a[i]的想法。(当然,如果没有限制的话,这种方法空间复杂度O(1), 时间复杂度O(n)。 )
如果正常没有限制的话,明显我们可以考虑使用二重循环,直接计算,当然这里要辅助数组,保存数组a的原始值。代码如下
// assume n is a predefined constant
int a[n]; // original array
int b[n]; // Auxiliary array
for (int i = 0; i < n; ++i)
{
b[i] = 1;
for (int j = 0; j < n; ++j)
{
if (i