求数组的积

这篇博客探讨了如何在不使用除法的情况下计算数组中每个元素的乘积。作者首先介绍了不允许使用除法的限制,然后给出了一个简单的O(n^2)解决方案,但指出这不符合题目要求。接着,通过使用辅助数组,提出了一个时间复杂度为O(n)、空间复杂度也为O(n)的优化方案,该方案包括从前向后和从后向前遍历数组来计算元素的乘积。最后,作者指出如果没有限制,最简单的方法是计算所有元素的总乘积再逐个除以目标元素。
摘要由CSDN通过智能技术生成

一个长度为n的数组a[0],a[1],...,a[n-1]。现在更新数组的名个元素,即a[0]变为a[1]到a[n-1]的积,a[1]变为a[0]和a[2]到a[n-1]的积,...,a[n-1]为a[0]到a[n-2]的积。
程序要求: 要求具有线性复杂度;不能使用除法运算符。

对于数组a[n](长度为n,下标从0开始),如果按照题目要求就是a[i] = a[0]xa[1]x...xa[i-1]xa[i+1]x...xa[n-1],其中i属于[0, n)。

首先说明一点,这里不准用除法,也就是不要用求出数组所有元素的成绩然后除以a[i]的想法。(当然,如果没有限制的话,这种方法空间复杂度O(1), 时间复杂度O(n)。 )

如果正常没有限制的话,明显我们可以考虑使用二重循环,直接计算,当然这里要辅助数组,保存数组a的原始值。代码如下

// assume n is a predefined constant 
int a[n];   // original array
int b[n];   // Auxiliary array
for (int i = 0; i < n; ++i)
{
  b[i] = 1;
  for (int j = 0; j < n; ++j)
  {
    if (i
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值