两道概率题求解(半原创)

本文探讨了两个概率问题:一是任意n个点在圆周上同时落在半圆上的概率,通过分析得出总概率为n/2n-1;二是球面上n个均匀随机分布的点落在同一半球的概率,通过计算得出概率为(F(n))/2^n,其中F(n)=n^2-n+2,证明了F(n)与点的具体位置无关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:任意投n个点在圆周上,问它们同时落在一个半圆上的概率是多少?

 

解: O表圆心,从投下的n个点中,任取一个点作起点,顺时针方向进行编号为P1P2. . .  P n ,过P1P2 . . . P nn条半径,用X1X2. . . X n表相应的圆心角的值。易知有X1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值