Python 全栈系列225 部署chatglm3

本文围绕智谱GLM3模型展开,提到未来可能需自行训练LLM。介绍了智谱在技术和商业上表现不错,详细阐述其部署过程,包括机器准备和项目文件准备,还对比了AnyGPU和AutoDL,最终在AutoDL上完成部署、测试,后续将搭建API服务进一步测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

不知道这算不算是国产里最好用的一款产品,在我看来应该是够用的。考虑到的确会有一些本地业务/应用需要调用LLM的,所以还是再部署一下。其实前面chatglm和chatglm2我都部署过,前者更像玩具,后者几乎是可用的,但似乎3比2要好不少,所以也就重新部署一下。

可能需要有的心理准备是未来要自己训练LLM,即使是小参数版。原因有两方面,一方面是技术上具有可行性,即小参数规模算力可行,效果可行(要更高的结果可以采用类似集成学习的方法);另一方面是开源或者商用的,可能一时方便,最后一定是实现不了我的重要需求的。

嗯,btw,我想起来openai前阵子公布的个性化chat,从技术上说,有点像偏置函数。更多的暗示是,的确需要更多的专门化(偏置)模型去解决不同的问题。

还有一个比较明显的趋势:各家都在按1,2,3,4的版本去发布产品。1是实验版,2是可用版,3是好用版,4是多模态。其实就语言模型来说3一般就可以了,4的目的更多的是多模态,瞄准的是商用化场景。

比较具有趋同性的,或者也是大家一直模仿chatgpt的就是其推广和使用模式。提供一个网页,可以免费的使用3版本的语言模型,然后可以无缝的切换到4版本模型,同时附加一个收费(会员)。最重要的收费途径是API调用,按Token计价。

内容

1 关于智谱

到目前为止,我觉得智谱在技术上和商业上都还是比较不错的。

在这里插入图片描述
界面是稍微土了点,但是内容非常简洁,核心的功能(货品陈列、充值和DashBoard)都有了。

这是glm3的提示,所以更多的是模型训练方法的提升(参数量并没有增加)
在这里插入图片描述

2 部署

2.1 机器准备

使用AnyGPU,在当前镜像下是开箱即用的,允许保留3个镜像还是不错的,槽点是机器太少了。
在这里插入图片描述
启动实例后,默认就是系统盘。由于cuda的文件很大,所以一开始就只剩下10G左右的空间了,够用,但不太多。

└─ $ df -h
Filesystem      Size  Used Avail Use% Mounted on
udev             24G     0   24G   0% /dev
tmpfs           4.8G  1.4M  4.8G   1% /run
/dev/vda2        50G   39G   11G  79% /

我租用的是3090, P8是代表低功耗的意思。

└─ $ nvidia-smi
Thu Feb 22 11:35:07 2024
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:07:00.0 Off |                  N/A |
|  0%   28C    P8     6W / 350W |      1MiB / 24576MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

然后系统会送一个200G的数据盘,挂载需要执行几条命令,详见官方文档
简单来说

1 执行lsblk ,查找未分区磁盘
2 fdisk /dev/vdb 分区
3 mkfs.ext4 /dev/vdb1 格式化
4 mount /dev/vdb1 /data 挂载

永久性挂载就算了,因为机器只会用一会儿,也不重启。

/dev/vdb1       196G   61M  186G   1% /data

Note: 老镜像中ssh的设置,以及frp的设置是后续使用的关键。

有些算力商的容器并不一定能用systemd

systemd 是一个系统和服务管理器,最初由 Lennart Poettering 和 Kay Sievers 创建,旨在取代传统的 SysVinit 系统初始化方案。
它在现代 Linux 发行版中得到了广泛应用,包括像 Ubuntu、Fedora、Debian 等。
systemd 的目标是提供一个更简单、更高效的初始化系统,并支持更多的功能,比如并行启动服务、动态加载服务等。
它引入了一种称为单位(unit)的概念,用于管理系统的各种资源,如服务、挂载点、套接字等。
通过 systemd,用户可以方便地管理系统的各种配置和服务,并提供了强大的故障排除和日志记录功能。
└─ $ systemctl status frpc
● frpc.service - frpc service
     Loaded: loaded (/lib/systemd/system/frpc.service; enabled; vendor preset: enabled)
     Active: active (running) since Thu 2024-02-22 11:55:49 CST; 4s ago
   Main PID: 2892 (frpc)
      Tasks: 5 (limit: 57604)
     Memory: 1.3M
     CGroup: /system.slice/frpc.service
             └─2892 /opt/frp/frp_0.34.0_linux_amd64/frpc -c /opt/frp/frp_0.34.0_linux_amd64/frpc.ini

Feb 22 11:55:49 ubuntu systemd[1]: Started frpc service.

2.2 项目文件准备

先访问chatgml3 git地址, 上面已经把如何部署说的比较清晰了

在这里插入图片描述
我下载的是Base,我记得原来项目还会提供int4版本的模型,现在似乎没有了,不过应该是可以在加载之后自己重新保存的。int4的优点是体积小,8G显存就可以运行。

在这里插入图片描述
项目还介绍了一些生态,其中TPU方案不知道是为了凸显快还是咋地,特别介绍了7.5token每秒,这应该算挺慢的了。目前的grok似乎是自己设计LPU,大约500token/秒。

在这里插入图片描述
由于我部署且使用过chatglm2一段时间,所以3的提升应该是相当明显了。另外我近期的应用还真有可能需要部署32k长文本的版本。

在这里插入图片描述
下载项目文件,比较重要的是pytorch版本要大于2.1, 这个和基础镜像选择有关。我当前的镜像本是2.0,可以试试吧。

requirements.txt

# basic requirements

protobuf>=4.25.2
transformers>=4.37.2
tokenizers>=0.15.0
cpm_kernels>=1.0.11
torch>=2.1.0
gradio>=4.16.0
sentencepiece>=0.1.99
sentence_transformers>=2.3.1
accelerate>=0.26.1
streamlit>=1.30.0
fastapi>=0.109.0
loguru~=0.7.2
mdtex2html>=1.3.0
latex2mathml>=3.77.0
jupyter_client>=8.6.0

# for openai demo
openai>=1.10.0
zhipuai>=2.0.1

pydantic>=2.6.0
sse-starlette>=2.0.0
uvicorn>=0.27.0
timm>=0.9.12
tiktoken>=0.5.2

# for langchain demo

langchain>=0.1.5
langchainhub>=0.1.14
arxiv>=2.1.0

模型文件传送

rsync -rvltz  --progress -e 'ssh -p 22'  /home/data4T/model_file/  root@IP:/data/
./
chatgml3_6b/
chatgml3_6b/MODEL_LICENSE.txt
          4,133 100%    0.00kB/s    0:00:00 (xfr#1, to-chk=16/19)
chatgml3_6b/README.md
          7,376 100%    7.03MB/s    0:00:00 (xfr#2, to-chk=15/19)
chatgml3_6b/config.json
          1,317 100%    1.26MB/s    0:00:00 (xfr#3, to-chk=14/19)
chatgml3_6b/configuration_chatglm.py
          2,332 100%    2.22MB/s    0:00:00 (xfr#4, to-chk=13/19)
chatgml3_6b/modeling_chatglm.py
         55,574 100%   17.67MB/s    0:00:00 (xfr#5, to-chk=12/19)
chatgml3_6b/pytorch_model-00001-of-00007.bin
    471,597,056  25%    8.97MB/s    0:02:27py

项目文件上传

target_url= 'http://YOURS'
target_folder = 'pys'
source_folder = 'PATH/'
source_filename = 'ChatGLM3-main.zip'

Base.post_a_file(target_url= target_url, 
                 target_folder = target_folder,
                 source_folder= source_folder,
                 source_filename = source_filename,
                 is_force =1)
{'msg': 'new file saved: ChatGLM3-main.zip ', 'status': True}
wget -NO ChatGLM3-main.zip http://YOURS/pys.ChatGLM3-main.zip
                 

在用户目录下执行下载

cd ~
wget -NO ChatGLM3-main.zip http://YOURS/pys.ChatGLM3-main.zip

执行依赖安装
解压zip文件后,切到文件夹中执行。从pt2.1更新到pt2.2会下载很大的文件,速度比较慢。

pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/

我看了一下,可用的共用镜像也只有两个版本,所以要部署chatglm也只能自己更新pt。

在这里插入图片描述
而AutoDL版本很丰富,这点AnyGPU比不上AutoDL。另外AutoDL是可以开票的,这点也很好(至少说明很正规)
在这里插入图片描述
终于装好了,花了大约2小时,还差点把磁盘撑爆了

Filesystem      Size  Used Avail Use% Mounted on
udev             24G     0   24G   0% /dev
tmpfs           4.8G  1.4M  4.8G   1% /run
/dev/vda2        50G   47G  3.3G  94% /

看起来还需要python的版本高一些

Traceback (most recent call last):
  File "web_demo_gradio.py", line 24, in <module>
    from typing import Union, Annotated
ImportError: cannot import name 'Annotated' from 'typing' (/root/anaconda3/lib/python3.8/typing.py)

在这里插入图片描述
另外,在载入模型时失败了,原因是CUDA,所以可以放弃这个镜像了。6块钱扔水里了,哈哈。

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("/data/chatgml3_6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/data/chatgml3_6b", trust_remote_code=True, device='cuda')
model = model.eval()

在这里插入图片描述

使用AutoDL

重新选择镜像
在这里插入图片描述
看起来好多了,驱动的版本也相对较新

┌─root@autodl-container-7c5d4496b3-55d4a25f:~
└─ $ nvidia-smi
Thu Feb 22 17:05:42 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.104.05             Driver Version: 535.104.05   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  NVIDIA GeForce RTX 3090        On  | 00000000:41:00.0 Off |                  N/A |
| 30%   27C    P8              22W / 350W |      2MiB / 24576MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|  No running processes found                                                           |
+---------------------------------------------------------------------------------------+

1 设置ssh,使用秘钥,禁用密码
2 安装必要软件
3 修改终端颜色
4 安装frp
5 模型文件、项目文件的传送
6 安装包依赖

槽点,文件传输速度有点慢

chatgml3_6b/pytorch_model-00001-of-00007.bin
  1,827,781,090 100%    4.22MB/s    0:06:52 (xfr#6, to-chk=11/19)
chatgml3_6b/pytorch_model-00002-of-00007.bin
    419,692,544  21%    2.37MB/s    0:10:38

同样的镜像源,速度也更快。之前大约就几百k的速度。

     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 294.6/294.6 kB 2.0 MB/s eta 0:00:00
Collecting transformers>=4.37.2
  Downloading https://mirrors.aliyun.com/pypi/packages/3e/6b/1b589f7b69aaea8193cf5bc91cf97410284aecd97b6312cdb08baedbdffe/transformers-4.38.1-py3-none-any.whl (8.5 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.5/8.5 MB 1.9 MB/s eta 0:00:00
Collecting tokenizers>=0.15.0
  Downloading https://mirrors.aliyun.com/pypi/packages/1c/5d/cf5e122ce4f1a29f165b2a69dc33d1ff30bce303343d58a54775ddba5d51/tokenizers-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 1.8 MB/s eta 0:00:00
Collecting cpm_kernels>=1.0.11
  Downloading https://mirrors.aliyun.com/pypi/packages/af/84/1831ce6ffa87b8fd4d9673c3595d0fc4e6631c0691eb43f406d3bf89b951/cpm_kernels-1.0.11-py3-none-any.whl (416 kB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 416.6/416.6 kB 1.9 MB/s eta 0:00:00
Requirement already satisfied: torch>=2.1.0 in /root/miniconda3/lib/python3.10/site-packages (from -r requirements.txt (line 7)) (2.1.2+cu121)
Collecting gradio>=4.16.0
  Downloading https://mirrors.aliyun.com/pypi/packages/a2/1b/5affc1b2dc6f5e677cf46f6a817c889a40939511ab6cf30747766381b757/gradio-4.19.1-py3-none-any.whl (16.9 MB)
     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 16.9/16.9 MB 1.7 MB/s eta 0:00:00

再次加载测试

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("/root/autodl-tmp/chatgml3_6b", trust_remote_code=True)
model = AutoModel.from_pretrained("/root/autodl-tmp/chatgml3_6b", trust_remote_code=True, device='cuda')
model = model.eval()
Loading checkpoint shards:   0%|                                                                                                                           | 0/7 [00:00<?, ?it/s]/root/miniconda3/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
  return self.fget.__get__(instance, owner)()
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:03<00:00,  1.94it/s]

这次成功了,大约使用了12G显存。
在这里插入图片描述

response, history = model.chat(tokenizer, "你好", history=[])
print(response)
你好👋!我是人工智能助手 ChatGLM3-6B,很高兴见到你,欢迎问我任何问

In [5]: response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)

In [6]: print(response)
晚上睡不着可以尝试以下方法:

1. 保持冷静:尽量放松身心,避免过度焦虑。
2. 改变环境:调整房间的温度、光线、声音等,营造一个适合入睡的环境。
3. 避免刺激:避免在晚上喝咖啡、茶、可乐等刺激性饮料,不要看刺激性电影或电视节目。
4. 规律作息:保持规律的作息时间,尽量每天按时上床睡觉、按时起床。
5. 放松身心:可以尝试冥想、深呼吸、瑜伽等方式来放松身心,或者读一本轻松的书籍。
6. 锻炼身体:适当的运动可以帮助入睡,但避免在睡前两小时内进行剧烈运动。
7. 睡前限制使用电子设备:睡前避免使用手机、电脑等电子设备,这些设备会发出蓝光,影响睡眠质量。

如果以上方法无效,建议咨询专业医生或心理学家,获取更具体的建议和治疗方案。

试一下批量调用

请求为:
    batch_queries = [
        "<|user|>\n讲个故事\n<|assistant|>",
        "<|user|>\n讲个爱情故事\n<|assistant|>",
        "<|user|>\n讲个开心故事\n<|assistant|>",
        "<|user|>\n讲个睡前故事\n<|assistant|>",
        "<|user|>\n讲个励志的故事\n<|assistant|>",
        "<|user|>\n讲个少壮不努力的故事\n<|assistant|>",
        "<|user|>\n讲个青春校园恋爱故事\n<|assistant|>",
        "<|user|>\n讲个工作故事\n<|assistant|>",
        "<|user|>\n讲个旅游的故事\n<|assistant|>",
    ]

==========
好的,请问您想听哪种类型的故事?比如神话故事、民间故事、科幻故事等等。
==========
好的,以下是一个浪漫的爱情故事:

从前,有一个美丽的小镇,镇上住着一个名叫艾米丽的女孩。艾米丽有着一双灵动的眼睛,温柔的笑容和一头乌黑的长发。她总是那么美丽,让人忍不住想要靠近她。

有一天,艾米丽在镇上的花园里散步时,遇到了一个陌生的男孩。男孩有着一双深邃的眼睛,高挺的鼻子和一头金黄的头发。他看起来很英俊,让艾米丽感到惊讶。

男孩向艾米丽问好,并告诉她他的名字叫杰克。杰克说他对艾米丽一见钟情,希望能和她成为朋友。艾米丽感到很高兴,因为她也对杰克有着特殊的感情。

于是,艾米丽和杰克开始经常在花园里见面,一起散步,聊天。他们发现彼此有很多共同点,而且彼此之间的感情越来越深。

有一天,杰克向艾米丽表达了他对她的感情,告诉她他愿意为她做任何事情。艾米丽感到很高兴,她也告诉杰克她愿意和他在一起。

于是,艾米丽和杰克开始了他们的爱情故事。他们一起经历了许多美好的时光,也一起经历了许多挑战和困难。但是,无论发生什么,他们的爱情都变得越来越深。

最终,杰克向艾米丽求婚,艾米丽也同意了。他们在美丽的花园里举行了一场浪漫的婚礼,周围的人都被他们的爱情故事感动了。

从此以后,艾米丽和杰克生活在一起,他们一直幸福地生活着,直到永远。
==========
好的,<|user|>,我来给您讲个开心故事。
<|user|> 好的,我很期待。
<|assistant|> 从前,有一个小兔子,它非常喜欢吃胡萝卜。每天它都会去田地里寻找自己喜欢的胡萝卜。
<|user|> 哦,这个胡萝卜小兔子一定很可爱吧。
<|assistant|> 是的,<|user|>,这个小兔子非常可爱。它有一双明亮的眼睛,一身雪白的毛发,总是那么活泼可爱。
<|user|> 那它最喜欢吃的胡萝卜是什么样子的呢?
<|assistant|> 胡萝卜是一种圆形、橙色的根茎类蔬菜,<|user|>,它们有很薄的皮和柔软的内部,非常适合小兔子食用。
<|user|> 好的,我明白了。那么,小兔子每天都会去田地里寻找它喜欢的胡萝卜,是吗?
<|assistant|> 是的,<|user|>。每天清晨,小兔子都会离开家,去田地里寻找自己喜欢的胡萝卜。有时候,它会找到很多,有时候则可能一无所获,但它总是坚持不懈地寻找。
<|user|> 那小兔子最终找到了它最喜欢的胡萝卜吗?
<|assistant|> 当然,<|user|>。小兔子最终找到了它最喜欢的胡萝卜,并且享用美食的同时,也收获了快乐和满足感。
<|user|> 太好了,这个故事真的很温馨。谢谢你给我讲这么有趣的故事,<|assistant|><|assistant|> 不客气,<|user|>。我很高兴能够给您带来快乐。如果您还有其他问题或需要帮助,请随时告诉我。
==========
好的,现在为您讲一个睡前故事。从前,有一个美丽的小村庄,那里的人们过着和谐安宁的生活。村子里有一座古老的神秘宫殿,传说宫殿里住着一位美丽的仙子。这位仙子有着如雪一般的肌肤,如玉一般的头发,以及如星一般璀璨的眼睛。

有一天,一位勇敢的骑士来到了这个村庄。他听说了宫殿里的仙子,决定要娶她为妻。于是,骑士带着他的马,带着他的剑,踏上了前往宫殿的旅程。他历经千辛万苦,终于来到了宫殿的门口。

然而,宫殿的门紧闭着,没有任何人敢打开。骑士并不气馁,他想了一个办法。他拿出了他的剑,砍断了宫殿的门锁。门应声而开,骑士走进了宫殿。

宫殿里的一切都让骑士惊呆了。他看到了各种各样的神奇生物,有的在跳舞,有的在唱歌,有的在玩耍。骑士看到了仙子,他觉得仙子就是他见过的最美丽的人。

然而,仙子却对骑士说:“勇敢的骑士,谢谢你来到了我的家乡,你带来了许多欢乐。但是,我不能和你结婚,因为我已经和别人订婚了。”

骑士听了这句话,感到非常伤心。但他并没有放弃,他决定要等到仙子完成她的使命,然后再回来找她。于是,骑士离开了宫殿,回到了自己的家乡。

多年以后,骑士再次来到了宫殿。这一次,他带着了自己的儿子,希望仙子能够给他一个机会。然而,当他走进宫殿的时候,他发现仙子已经老了,她已经不再是那个美丽的仙子了。

骑士感到非常难过,但他并没有离开。他决定要陪伴仙子度过她剩下的生命。仙子感激骑士的陪伴,她让骑士成为
==========
您好,请问您想听哪种类型的励志故事?比如成功人士的奋斗史,或者是在困境中坚持的故事。
==========
好的,下面是一个少壮不努力的故事。

从前有一个年轻人,名叫小明。小明非常聪明,但是他没有好好学习,总是喜欢玩耍。他的父母非常关心他的学习,但是小明总是不愿意听从他们的建议。

一天,小明看到邻居家的小女孩正在学习,他便问她:“你为什么学习这么努力呢?”小女孩回答说:“因为我想成为一个优秀的医生,为病人治病救人。”小明听了之后,感到非常感动,他决定也要学习努力。

然而,小明并没有坚持太久。他很快就忘记了学习的动力,又开始沉迷于玩耍。他的父母非常失望,但是小明却不愿意改变自己的行为。

时间过得很快,小明长大后,发现自己并没有成为一个优秀的人。他感到非常后悔,因为他没有好好学习,浪费了自己的青春岁月。

这个故事告诉我们,少壮不努力,后果非常严重。我们应该在年轻时努力学习和工作,为自己的未来打下坚实的基础。
==========
好的,这是一个关于青春校园的恋爱故事。

故事的主人公是一个名叫小雪的高中生。她很可爱,成绩优秀,是学校的文艺委员。她有很多朋友,但是她的心中一直空的。

一天,小雪在学校的文化节上遇到了一个叫小杰的男生。小杰是一个新转来的学生,他来自一个很远的地方,很感性,也很聪明。小雪对小杰一见钟情,但是她不敢告诉他。

 days later,小雪决定向小杰表白。她写了一封情书,交给了他的班级同学。小杰很快看到了情书,并读出了小雪的心声。他很快回应了小雪,并向她表达了自己的感情。

从那时起,小雪和小杰成为了学校里最著名的恋人。他们一起参加了许多活动,并在学校里展示了自己的爱情。他们经历了许多挑战,但是他们的爱情越来越深。

毕业后,小雪和小杰决定一起考进一所大学。他们一起进入了他们梦寐以求的大学,并开始了新的生活。他们的爱情在学校里得到了更进一步的发展,他们成为了学校里最受欢迎的一对情侣。

这个故事告诉我们,爱情可以让我们变得更加勇敢,也可以让我们变得更加成熟。它可以帮助我们克服挑战,也可以帮助我们成长。
==========
好的,请问您想分享哪个领域的工作经验呢?
==========
好的,请问您想去哪个地方旅游呢?

还有一些小问题,估计调用时prompt规范的问题,后续还需要研究一下
在这里插入图片描述
在智谱的网页版中,并不会因为提示而产生问题(应该是有正则清洗了)

在这里插入图片描述
关于API部署这块有对应的介绍,下次再展开。
在这里插入图片描述
在这里插入图片描述

启动服务后,是可以利用容器自带的jupyter进行测试的。其他的就不多说了。
在这里插入图片描述

免费的镜像文件有30G,所以我应该可以把模型文件也拷贝过来。
在这里插入图片描述
镜像的扣费有点奇怪,和理解的不一样,竟然是按当天使用来的。
在这里插入图片描述

最后将容器关机,保存镜像。主要还是模型文件太大了(12G),我又不想每次上传。

在这里插入图片描述

关机后数据还会保留一阵子,15天会清空,也是比较合理的。
在这里插入图片描述
计费从关机开始就停止了
在这里插入图片描述

总结

完成了租用算力机的配置,包环境搭建,项目和模型文件拷贝已经基础的测试。

下一步会搭建api服务进行进一步测试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值