Sobel算子学习与理解

本文介绍了Sobel边缘检测算子的原理,它通过3x3模板进行卷积运算,用于检测图像的水平和垂直边缘。Sobel算子简单快速,但对复杂纹理图像的检测效果不佳。文章还提到了其他模板和MATLAB的实现,并对比了Prewitt和Roberts算子的特点。
摘要由CSDN通过智能技术生成


一、Sobel边缘检测算子

 在讨论边缘算子之前,首先给出一些术语的定义:

 (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

 (2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点。

 (3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角。

二、Sobel算子的原理


Sobel算子是一阶导数的边缘检测算子,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘。

Sobel卷积因子(核)为:

该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,GxGy分别代表经横向及纵向边缘检测的图像灰度值,其公式如下:

具体计算如下:

Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)

      +(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)

      +(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)

= [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]

 

Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)

      +0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值