Spark调优学习记录(十五)故障排查

本文探讨了如何通过调整shufflereader缓冲、JVM参数、序列化规则、RDD设计和内存管理来避免内存溢出,包括减少shuffle端缓冲大小、优化GC行为、序列化要求以及持久化策略。还提到了Yarn-client模式下的网络流量问题和内存配置建议。
摘要由CSDN通过智能技术生成

控制reduce端缓冲大小避免OOM

shuffle reader的读取缓冲48M,内存不大时,不宜调整太大。

JVM GC导致的shuffle文件拉取失败

适当延长ack连接等待时长

提高shuffle重试最大次数

适当延长重试间隔

各种序列化导致的报错

RDD自定义类型,必须可以序列化

算子函数使用的外部自定义变量,也要序列化

不可以在RDD的元素类型、算子函数中使用第三方不支持序列化的类型,比如Connection

算子函数返回NULL导致的问题

替换为业务上没有意义的数据 比如-1

进行过滤

Yarn-client模式导致的网卡流量激增问题

driver在本地,当task比较多时,需要和executor通信,流量会激增。

线上使用cluster模式

Yarn-cluster模式的JVM占内存溢出无法执行

当永久代PermGen占用超过82M,小于128M,可以调整JVM参数

--conf spark.driver.extraJavaOptions="--XX:PermSize=128M --XX:MaxPermSize=256M"

SparkSQL导致的JVM栈内存溢出

持久化与checkpoint的使用

cache+checkpoint联合使用

内存泄漏排查

工具

IBM HeapAnalyzer

频繁GC

1、打印GC详情

如果多次full gc,首先考虑executor内存设置少了,增加ExecutorMemory。

2、如果任务结束前,full gc多次,说明老年代占满了。

3、如果有很多minor gc,但是full gc不多,可以给eden分配更多资源

4、调整gc回收器,通常使用G1.-XX:+UseG1GC。当execuotr的堆空间比较大时,可以提升G1 region size(-XX:G1HeapRegionSize)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值