带权二分图的最优匹配 Kuhn-Munkres算法

分工问题如下:某公司有工作人员x1,x2,...,xn,他们去做工作y1,y2,...,yn,每人适合做其中的一项或几项工作,每个人做不同的工作的效益不一样,我们需要制定一个分工方案,使公司的总效益最大,这就是所谓最佳分配问题, 它们数学模型如下:
数学模型:
    G是加权完全二分图,V(G)的二分图划分为X,Y;X={x1,...,xn},Y={y1,y2,...yn},w(xiyi)>=0是工作人员xi做yi工作时的效益,求权最大的完备匹配,这种完备匹配称为最佳匹配。
这个问题好象比较的棘手,用穷举法的话举也举死了,效率很低。本节给出一种有效算法,为此,先引入一个定义和一个定理。

定义1   映射l:V(G)->R,满足:任意x∈X,任意y∈Y,成立
l(x)+l(y)>=w(xy),
则称l(v)是二分图G的可行顶标;令
El={xy|xy∈E(G),l(x)+l(y)=w(xy)},
称以El为边集的G之生成子图为相等子图,记为Gl
可行顶标是存在的,例如
l(x)=max w(xy),x∈X;
l(y)=0, y∈Y.

定理1 Gl的完备匹配即为G的最佳匹配。
证:设M*是Gl的一个完备匹配,因Gl是G的生成子图,故M*也是G的完备匹配。M*中的边之端点集合含G的每个顶点恰一次,所以
W(M*)=Σw(e)=Σl(v) (e∈M*,v∈V(G)).
另一方面,若M是G中任意一个完备匹配,则
W(M)=Σw(e)<=Σl(v) (e∈M,v∈V(G)),
所以
W(M*)>=W(M),
即M*是最佳匹配,证毕。

定理1告知,欲求二分图的最佳匹配,只需用匈牙利算法求取其相等子图的完备匹配;问题是,当Gl中无完备匹配时怎么办?Kuhn和Munkras给出修改顶标的一个算法,使新的相等子图的最大匹配逐渐扩大,最后出现相等子图的完备匹配。

Kuhn-Munkras算法:
(0) 选定初始的可行顶标l,确定Gl,在Gl中选取一个匹配M。
(1) X中顶皆被M许配,止,M即为最佳匹配;否则,取Gl中未被M许配的顶u,令S={u},T为空。
(2) 若N(S)真包含T,转(3);若N(S)=T,取
al=min(l(x)+l(y)-w(xy)}(x∈S,y∈T),
l(v)-al,v∈S;
l(v)= l(v)+al,v∈T;
l(v),其它。
l=l,Gl=Gl。
(3) 选N(S)-T中一顶y,若y已被M许配,且yz∈M,则S=S∪{z},T=T∪{y},转(2);否则,取Gl中一个M的可增广轨P(u,y),令M=M⊙E(P),转(1)。

上面的算法看得有点莫名,改那个可行顶标怎么改改就好了?还是得看盾例子
例1   已知K5,5的权矩阵为
y1 y2 y3 y4 y5
x1 3 5 5 4 1
x2 2 2 0 2 2
x3 2 4 4 1 0
x4 0 1 1 0 0
x5 1 2 1 3 3

求最佳匹配,其中K5,5的顶划分为X={xi},Y={yi},i=1,2,3,4,5.
解:
(1)取可行顶标l(v)为l(yi)=0,i=1,2,3,4,5;l(x1)=max(3,5,5,4,1}=5,l(x2)=max{2,2,0,2,2}=2,l(x3)=max(2,4,4,1,0}=4,l(x4)=max{0,1,1,0,0}=1,l(x5)=max{1,2,1,3,3}=3.

(2) Gl及其上之匹配见图7.12。
这个图中ο(G-x2)=3,由Tutte定理知无完备匹配。需要修改顶标。
(3) u=x4,得S={x4,x3,x1},T={y3,y2},N(S)=T,于是
al=min(l(x)+l(y)-w(xy)}=1. (x∈S,y∈T)
x1,x2,x3,x4,x5的顶标分别修改成4,2,3,0,3;y1,y2,y3,y4,y5的顶标分别修改成0,1,1,0,0。

(4) 用修改后的顶标l得Gl及其上面的一个完备匹配如图7.13。图中粗实线给出了一个最佳匹配,其最大权是2+4+1+4+3=14。

我们看出:al>0;修改后的顶标仍是可行顶标;Gl中仍含Gl中的匹配M;Gl中至少会出现不属于M的一条边,所以会造成M的逐渐增广。
得到可行顶标后求最大匹配:

书上这部分没讲,实际上是这样的,对于上面这个例子来说,通过Kuhn-Munkres得到了顶标l(x)={4,2,3,0,3},l(y)={0,1,1,0,0},那么,对于所有的l(xi)+l(yj) =w(i,j),在二分图G设置存在边w(i,j)。再用匈牙利算法求出最大匹配,再把匹配中的每一边的权值加起来就是最后的结果了。

 



  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Kuhn-Munkres算法,也被称为匈牙利算法或是匹配算法,是一种用于解决二分图最大权匹配问题的经典算法。该算法被广泛应用在如任务分配、资源分配、指派问题等场景中。 在Matlab中,我们可以使用以下的步骤来实现Kuhn-Munkres算法: 1. 首先,我们需要将问题转化为一个二分图。比如,如果我们的问题是任务分配问题,那么我们可以用一个邻接矩阵来表示任务与资源之间的关系,其中矩阵的行表示任务,列表示资源,非零元素表示任务与资源之间的关系强度。 2. 接下来,我们需要定义一个函数来实现Kuhn-Munkres算法。函数的输入参数可以是我们定义好的邻接矩阵。在函数中,我们可以创建一个与邻接矩阵相同大小的全零矩阵,作为初始化的匹配集合。 3. 然后,我们可以将匹配问题转化为一个最大权完备匹配问题。这可以通过对邻接矩阵进行转换来实现。比如,我们可以对邻接矩阵的每一行进行减法操作,保留每行的最大值。 4. 在算法的主循环中,我们需要不断地找到最佳的匹配,并更新匹配集合。具体来说,我们可以从邻接矩阵中选择一个最高权值的未匹配点开始,然后通过一系列的增广路径来找到增广路径树。通过更新匹配集合,我们将已匹配点标记为匹配,未匹配点标记为未匹配,并继续寻找下一个未匹配点。直到无法找到更多增广路径为止。 5. 最后,我们可以返回匹配集合和最大权值。根据应用的不同,我们可以使用这些信息来解决具体的问题。 总之,Kuhn-Munkres算法是一种在Matlab中实现二分图最大权匹配算法。通过将问题转化为二分图,定义函数并实现算法的主要步骤,我们可以使用Matlab来解决各种应用场景中的最大权匹配问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值