加权二分图完美匹配算法(KM递归版本),python实现

本文介绍了加权二分图的完美匹配算法,特别是使用Python实现的KM递归版本。此外,还提到了通过BFS和费用流方法来解决同样问题的可能性。参考链接提供了更多关于算法原理和实现的详细信息。
摘要由CSDN通过智能技术生成

 

加权二分图完美匹配算法,numpy实现,KM递归版本。当然还有BFS版本和费用流

原理和其他实现参考

https://blog.csdn.net/sixdaycoder/article/details/47720471

https://blog.csdn.net/u014754127/article/details/78086014

import numpy as np
class max_bipartite_graph_match(object):

    def __init__(self,graph):
        self.graph = graph
        self.max_weight = graph.sum()
        self.n,self.m = graph.shape
        assert self.n == self.m
        self.lx = self.graph.max(1)
        self.ly = np.array([0] * self.m, dtype=int) #if weight of edges is float, change dtype to float
        self.match = np.array([-1] * self.n, dtype=int)
        self.slack = np.array([0] * self.m, dtype=int)
        self.visx = np.array([False] * self.n, dtype=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值