- 博客(8)
- 收藏
- 关注
原创 优化bert_large_ner提高ORG实体的边界识别能力(二)
【代码】优化bert_large_ner提高ORG实体的边界识别能力:示例代码写一下具体如何处理原本的BIO数据集,达到自己的数据集与bert分词器获得的label可以对应的效果,以及最后padding到统一长度,方便输入模型中。然后把df转化成dataset格式,能正确输入到模型中
2024-07-15 17:52:34 284
原创 优化bert_large_ner提高ORG实体的边界识别能力(一)
使用wikier数据集对hugging face的bert-large-ner模型进行微调,提高ner模型的准确率和泛化能力,这里数据集使用了IOB标注,需要进行BIO格式的标签统一。
2024-07-15 17:32:52 862
原创 NLTK库的安装:nltk.download()失败后如何手动下载语料库
NLTK库的安装:nltk.download()失败后如何手动下载语料库
2024-02-03 15:54:51 1433 1
原创 【anaconda报错】CondaSSLError: OpenSSL appears to be unavailable on this machine.问题记录与解决方法
【anaconda报错】CondaSSLError: OpenSSL appears to be unavailable on this machine.问题记录与解决方法
2024-02-03 15:26:22 4144 6
原创 读取IOB标注数据,并转化为BIO标注格式(二)
上一章详细解释了BIO和IOB数据标注的区别,并且对转化步骤做了详细说明。这一章以wikierNER数据集为例,展示读取IOB标注数据,并将其转化为BIO标注格式相关代码。
2024-01-03 18:43:28 548
原创 读取IOB标注数据,并转化为BIO标注格式(一)
BIO标注方法和IOB标注方法是用于命名实体识别(Named Entity Recognition,NER)任务的常用标注方法。以下代码可以读取IOB标注数据,并将其转化为BIO标注格式。
2024-01-03 18:18:23 938
原创 GlobalAveragePooling2D层和Flatten层
GlobalAveragePooling2D层是一种全局平均池化层,在该层中,每个特征图的特征被计算出来后,通过对每个特征图取平均值得到一个标量特征。这样,无论输入图像的尺寸大小如何变化,最终得到的特征都是固定长度的。相比较Flatten层,GlobalAveragePooling2D层会保留更少的特征信息,但减少了参数量和计算量。它可以将每个像素都看作是独立的特征,将二维或多维的图像特征转换为一维特征表示。Flatten层保留了更多的特征信息,但会增加模型的参数数量。
2023-09-18 15:51:44 469
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人