优化bert_large_ner提高ORG实体的边界识别能力(二)

 承接上一章,这里示例代码写一下具体如何处理一下内容:

1.处理原本的BIO数据集,达到自己的数据集与bert分词器获得的label可以对应的效果,

2.padding统一长度,方便输入模型中

3.把df转化成dataset格式,能正确输入到模型中

def encode_tags(label_list, inputs):
    labels = [[label2id[tag] for tag in doc.split()] for doc in label_list]  # 得到label-id的list
    encoded_labels = []

    count = 0
    for doc_labels, doc_offset in zip(labels, inputs.offset_mapping):
        # 创建0的空数组,按照bert原本的编码方法修改首尾为0
        doc_enc_labels = np.ones(len(doc_offset), dtype=int) * 0
        doc_enc_labels[0] = 0
        doc_enc_labels[-1] = 0
        num = 0
        for tupnum in range(len(doc_offset) - 1):
            if (doc_offset[tupnum + 1][0] - doc_offset[tupnum][1] == 1) or (
                doc_offset[tupnum][1] == 0): 
                doc_enc_labels[tupnum + 1] = doc_labels[num]   
                num += 1
            else:     
                pass

        count += 1
        encoded_labels.append(doc_enc_labels.tolist())

    padded_labels = []

    for l in encoded_labels:
        if len(l) < MAX_INPUT_LENGTH:
            l += [0] * (MAX_INPUT_LENGTH - len(l))
        else:
            l = l[:MAX_INPUT_LENGTH]
        padded_labels.append(l)

    return padded_labels


把df转化成dataset格式,能正确输入到模型中:

class MyDataset(Dataset):
    def __init__(self, input_ids, labels):
        self.input_ids = input_ids
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.input_ids.items()}
        item['labels'] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.labels)


现在我们需要重新获得inputs,但是不要offset_mapping,上一次需要是为了对齐标签,现在只需要做一个padding。

train_inputs = tokenizer(train_text, max_length=MAX_INPUT_LENGTH, truncation=True, padding='max_length')
dev_inputs = tokenizer(dev_text, max_length=MAX_INPUT_LENGTH, truncation=True, padding='max_length')

依据以上代码即可生成微调训练集,后面会讲到如何输入模型和进行效果评估。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值