题目描述:
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 。
请找出这两个有序数组的中位数。要求算法的时间复杂度为 O(log (m+n)) 。
你可以假设 nums1 和 nums2 不同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
中位数是 (2 + 3)/2 = 2.5
代码如下:
#define _CRT_SECURE_NO_DEPRECATE 1
#include "stdio.h"
#include<stdlib.h>
double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size) {
double ret;
if (nums1Size == 0 && nums2Size != 0){
return ret = (double)(nums2[(nums2Size - 1) / 2] + nums2[nums2Size / 2]) / 2;
}
if (nums2Size == 0 && nums1Size != 0){
return ret = (double)(nums1[(nums1Size - 1) / 2] + nums1[nums1Size / 2]) / 2;
}
int k = 0;
int i = 0;
int j = 0;
int* nums = (int *)malloc(sizeof(int)*(nums1Size+nums2Size));
int temp;
for (k = 0; i < nums1Size && j < nums2Size && (k < (nums1Size + nums2Size)); k++){
if (i < nums1Size && nums1[i] <= nums2[j]){
temp = nums1[i];
i++;
}
else{
temp = nums2[j];
j++;
}
nums[k] = temp;
}
if (i < nums1Size && j >= nums2Size){
for (i; i < nums1Size; i++){
nums[k++] = nums1[i];
}
}
if (j < nums2Size && i >= nums1Size){
for (j; j < nums2Size; j++){
nums[k++] = nums2[j];
}
}
return ret = (double)(nums[(k - 1) / 2] + nums[k / 2]) / 2;
}
int main()
{
int nums1[] = {1,3};
int nums2[] = {2};
int size1 = sizeof(nums1) / sizeof(int);
int size2 = sizeof(nums2) / sizeof(int);
double ret = findMedianSortedArrays(nums1, size1, nums2, size2);
printf("%1f\n", ret);
return 0;
}