逆强化学习

1.逆强化学习的理论框架

1.teacher的行为被定义成best

2.学习的网络有两个,actor和reward

3.每次迭代中通过比较actor与teacher的行为来更新reward function,基于新的reward function来更新actor使得actor获得的reward最大。

loss的设计相当于一个排序问题,实际中多使用最大熵loss:

-log(sigmoid(P_label - P_actor))

IRL与GAN在原理上相似,actor对应generator,reward function对应 discriminator,真实图片对应专家数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值