语义分割系列12-APCNet(pytorch实现)

APCNet(Adaptive Pyramid Context Network)发布于2019CVPR。

论文地址:Adaptive Pyramid Context Network for Semantic Segmentation


引言

如先前的工作:

  • PSPNet 提出了PPM(Pyramid Pooling Module) 来聚合全局的上下文信息;
  • ParseNet 则是使用了简单但效果不错的GAP(Global Average Pooling)来编码全局上下文;
  • DANet 采用了self-attention机制来捕获任意距离内的全局信息;
  • PSANet 是在引入PSA模块(注意力机制的一种)来聚合信息,也是通过注意力机制来编码全局的上下文信息。

这些工作都提到了全局信息的融合,以及提升多尺度检测效果的一些方式。

作者在回顾完先前的工作后,提出了三个拟解决问题:

  1. 多尺度问题(Multi-scale)
  2. 自适应区域(Adaptive)
  3. 全局和局部的信息融合权重(Global-guided Local Affinity, GLA)
  • 首先是多尺度问题,对于语义分割任务而言,物体往往存在尺寸不同、位置不同的特点,对于一些没有聚合上下文信息的模型来说,检测这种尺寸相差较大的物体比较困难,同时会丢失一些细节信息。
  • 对于自适应区域的问题:在图像中,并不是所有的区域都与被分割物体有关,或者说,有些像素点对于物体正确分割的影响大,而有些像素点则没有什么影响。同时,这些像素点或者叫相关区域的位置不一定就在被分割物体的周围,也有可能远离被分割物体。这就要求模型具有自适应选择区域的能力,能够识别这些重要区域帮助物体的正确分割。
  • 而对于GLA而言,也是许多模型存在的问题,就是在构建了上下文向量之后,如何将上下文向量和原始特征图进行加权,这个权重如何该去选择和计算。

通过这三个问题的引入,作者提出了PSANet来提供解决方案。


模型

图1 PSANet模型图
图1 PSANet

APCNet的金字塔层由若干个ACM模块来构成,类似于PSPNet中的PPM模块。每一个ACM模块接收一个scale(s)参数,来确定区域大小s。

ACM(Adaptive Context Module)

作者提出了ACM模块来解决所提出的三个问题。

ACM本质上就是利用GLA来计算每个局部位置的上下文向量,并将这个向量加权到特征图上,实现一个聚合上下文信息的作用。

ACM由两个分支构成,本文称为GLA分支和Aggregate分支。

GLA分支

图2 GLA分支

在GLA分支中,backbone输出的特征图记为X,X先经过一个1x1的Conv来得到一个特征映射x,通过一个空间全局池化,将x映射成一个全局信息向量(Global Information)g(X)。随后,将x和g(X)通过一个1x1的Conv和Sigmoid激活,生成一个GLA vector - \alpha^ s,将这个向量\alpha^ s reshape后得到结果。

Aggregate分支

图 2 Aggregate分支

在Aggregate分支中, 特征图X通过AdaptivePooling(size=s)、Conv(kernel size=1x1)、reshape后得到的形状为s**2*512大小的 y^s ,这个y^s 与GLA分支中的GLA向量 \alpha^ s进行矩阵乘法,生成hw*512的结果。在这一步完成初步的特征融合。最后reshape成原始大小,并与GLA部分的残差相加,最终输出总的融合结果。

 整个过程也可以用公式来说明:

 其中:α = f(x,g,j)


模型复现

模型部分

backbone ResNet50

import torch
import torch.nn as nn

class BasicBlock(nn.Module):
    expansion: int = 4
    def __init__(self, inplanes, planes, stride = 1, downsample = None, groups = 1,
        base_width = 64, dilation = 1, norm_layer = None):
        
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(planes, planes ,kernel_size=3, stride=stride, 
                               padding=dilation,groups=groups, bias=False,dilation=dilation)
        
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample= None,
        groups = 1, base_width = 64, dilation = 1, norm_layer = None,):
        super(Bottleneck, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, stride=1, bias=False)
        self.bn1 = norm_layer(width)
        self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, bias=False, padding=dilation, dilation=dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class ResNet(nn.Module):
    def __init__(
        self,block, layers,num_classes = 1000, zero_init_residual = False, groups = 1,
        width_per_group = 64, replace_stride_with_dilation = None, norm_layer = None):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer
        self.inplanes = 64
        self.dilation = 2
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
            
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=1, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block,
        planes,
        blocks,
        stride = 1,
        dilate = False,
    ):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = stride
            
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,  planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                norm_layer(planes * block.expansion))

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
        return nn.Sequential(*layers)

    def _forward_impl(self, x):

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        return x

    def forward(self, x) :
        return self._forward_impl(x)
    def _resnet(block, layers, pretrained_path = None, **kwargs,):
        model = ResNet(block, layers, **kwargs)
        if pretrained_path is not None:
            model.load_state_dict(torch.load(pretrained_path),  strict=False)
        return model
    
    def resnet50(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 6, 3],pretrained_path,**kwargs)
    
    def resnet101(pretrained_path=None, **kwargs):
        return ResNet._resnet(Bottleneck, [3, 4, 23, 3],pretrained_path,**kwargs)

 APCNet主体结构

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms import Resize
class ACMModle(nn.Module):
    def __init__(self, in_channels=2048, channels=512, pool_scale=1, fusion=True):
        super(ACMModle, self).__init__()
        self.pool_scale = pool_scale
        self.in_channels = in_channels
        self.channels = channels
        self.fusion = fusion
        
        # Global Information vector
        self.reduce_Conv = nn.Conv2d(self.in_channels, self.channels, 1)
        self.reduce_Pool_Conv = nn.Conv2d(self.in_channels, self.channels, 1)
        
        self.residual_conv = nn.Conv2d(self.channels, self.channels, 1)
        self.global_info = nn.Conv2d(self.channels, self.channels, 1)
        self.gla = nn.Conv2d(self.channels, self.pool_scale**2, 1, 1, 0)
        
        if self.fusion:
            self.fusion_conv = nn.Conv2d(self.channels, self.channels, 1)


    def forward(self, x):
        batch_size, c, w, h = x.shape
        pooled_x = self.reduce_Pool_Conv(x)
        pooled_x = pooled_x.view(batch_size, self.channels,-1).permute(0, 2, 1).contiguous()
        x = self.reduce_Conv(x)
        GI = self.global_info(F.adaptive_avg_pool2d(x, 1))
        GI = Resize(x.shape[2:])(GI)
        
        Affinity_matrix = self.gla(x + GI).permute(0, 2, 3, 1).reshape(batch_size, -1, self.pool_scale**2)
        
        Affinity_matrix = F.sigmoid(Affinity_matrix)
        
        
        pooled_x = F.adaptive_avg_pool2d(x, self.pool_scale)
        pooled_x = pooled_x.view(batch_size, -1, self.pool_scale**2).permute(0, 2, 1).contiguous()
        MatrixProduct = torch.matmul(Affinity_matrix, pooled_x)
        MatrixProduct = MatrixProduct.permute(0, 2, 1).contiguous()
        MatrixProduct = MatrixProduct.view(batch_size, self.channels, x.size(2), x.size(3))
        MatrixProduct = self.residual_conv(MatrixProduct)
        Z_out = F.relu(MatrixProduct + x)
        
        if self.fusion:
            Z_out = self.fusion_conv(Z_out)
        return Z_out
    
    
class ACMModuleList(nn.ModuleList):
    def __init__(self, pool_scales = [1,2,3,6], in_channels = 2048, channels = 512):
        super(ACMModuleList, self).__init__()
        self.pool_scales = pool_scales
        self.in_channels = in_channels
        self.channels = channels
        
        for pool_scale in pool_scales:
            self.append(
                ACMModle(in_channels, channels, pool_scale)
            )
            
    def forward(self, x):
        out = []
        for ACM in self:
            ACM_out = ACM(x)
            out.append(ACM_out)
        return out
    
class APCNet(nn.Module):
    def __init__(self, num_classes):
        super(APCNet, self).__init__()
        self.num_classes = num_classes
        self.backbone = ResNet.resnet50(replace_stride_with_dilation=[1,2,4])
        self.in_channels = 2048
        self.channels = 512
        self.ACM_pyramid = ACMModuleList(pool_scales=[1,2,3,6], in_channels=self.in_channels, channels=self.channels)
        self.conv1 = nn.Sequential(
            nn.Conv2d(4*self.channels + self.in_channels, self.channels, 3, padding=1),
            nn.BatchNorm2d(self.channels),
            nn.ReLU()
        )
        self.cls_conv = nn.Conv2d(self.channels, self.num_classes, 3, padding=1)
        
    def forward(self, x):
        x = self.backbone(x)
        ACM_out = self.ACM_pyramid(x)
        ACM_out.append(x)
        x = torch.cat(ACM_out, dim=1)
        x = self.conv1(x)
        x = Resize((8*x.shape[-2], 8*x.shape[-1]))(x)
        x = self.cls_conv(x)
        return x
        

数据集部分

数集使用Camvid .

# 导入库
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import os.path as osp
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2

torch.manual_seed(17)
# 自定义数据集CamVidDataset
class CamVidDataset(torch.utils.data.Dataset):
    """CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
    
    Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline 
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing 
            (e.g. noralization, shape manipulation, etc.)
    """
    
    def __init__(self, images_dir, masks_dir):
        self.transform = A.Compose([
            A.Resize(224, 224),
            A.HorizontalFlip(),
            A.VerticalFlip(),
            A.Normalize(),
            ToTensorV2(),
        ]) 
        self.ids = os.listdir(images_dir)
        self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
        self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

    
    def __getitem__(self, i):
        # read data
        image = np.array(Image.open(self.images_fps[i]).convert('RGB'))
        mask = np.array( Image.open(self.masks_fps[i]).convert('RGB'))
        image = self.transform(image=image,mask=mask)
        
        return image['image'], image['mask'][:,:,0]
        
    def __len__(self):
        return len(self.ids)
    
    
# 设置数据集路径
DATA_DIR = r'dataset\camvid' # 根据自己的路径来设置
x_train_dir = os.path.join(DATA_DIR, 'train_images')
y_train_dir = os.path.join(DATA_DIR, 'train_labels')
x_valid_dir = os.path.join(DATA_DIR, 'valid_images')
y_valid_dir = os.path.join(DATA_DIR, 'valid_labels')
    
train_dataset = CamVidDataset(
    x_train_dir, 
    y_train_dir, 
)
val_dataset = CamVidDataset(
    x_valid_dir, 
    y_valid_dir, 
)

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True,drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=8, shuffle=True,drop_last=True)
model = APCNet(num_classes=33).cuda()
#model.load_state_dict(torch.load(r"checkpoints/resnet101-5d3b4d8f.pth"), strict=False)

模型训练

from d2l import torch as d2l
from tqdm import tqdm
import pandas as pd
#损失函数选用多分类交叉熵损失函数
lossf = nn.CrossEntropyLoss(ignore_index=255)
#选用adam优化器来训练
optimizer = optim.SGD(model.parameters(), lr=0.1)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5, last_epoch=-1)

#训练50轮
epochs_num = 100
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,scheduler,
               devices=d2l.try_all_gpus()):
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    
    loss_list = []
    train_acc_list = []
    test_acc_list = []
    epochs_list = []
    time_list = []
    
    for epoch in range(num_epochs):
        # Sum of training loss, sum of training accuracy, no. of examples,
        # no. of predictions
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.long(), loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
        scheduler.step()
        print(f"epoch {epoch+1} --- loss {metric[0] / metric[2]:.3f} ---  train acc {metric[1] / metric[3]:.3f} --- test acc {test_acc:.3f} --- cost time {timer.sum()}")
        
        #---------保存训练数据---------------
        df = pd.DataFrame()
        loss_list.append(metric[0] / metric[2])
        train_acc_list.append(metric[1] / metric[3])
        test_acc_list.append(test_acc)
        epochs_list.append(epoch+1)
        time_list.append(timer.sum())
        
        df['epoch'] = epochs_list
        df['loss'] = loss_list
        df['train_acc'] = train_acc_list
        df['test_acc'] = test_acc_list
        df['time'] = time_list
        df.to_excel("savefile/APCNet_camvid.xlsx")
        #----------------保存模型-------------------
        if np.mod(epoch+1, 5) == 0:
            torch.save(model.state_dict(), f'checkpoints/APCNet_{epoch+1}.pth')
train_ch13(model, train_loader, val_loader, lossf, optimizer, epochs_num,scheduler)

训练结果

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yumaomi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值