第十章《Opencv机器学习基础》

机器学习基础

机器学习是人工智能的一个分支,主要研究如何通过算法和统计模型使计算机系统从数据中学习,从而改善系统的性能。机器学习可以分为三大类:

  1. 监督学习(Supervised Learning)

    • 分类(Classification):用于将数据点分到预定义的类别中。
    • 回归(Regression):用于预测连续数值(例如房价预测、温度预测等)。
  2. 无监督学习(Unsupervised Learning)

    • 聚类(Clustering):将数据分成若干簇(clusters),每个簇中的数据是相似的,但不同簇中的数据是不同的。
  3. 强化学习(Reinforcement Learning)

    • 主要用于智能体与环境互动,学习如何在给定环境中采取最佳行动。

1. 分类问题(Classification)

分类是监督学习的一种任务,目标是将输入的特征数据分到不同的类别中。常见的分类算法有:

  • 支持向量机(SVM)
  • K最近邻(KNN)
  • 决策树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

《雨声》

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值