第5期 跟我聊一聊可微(可导)

本文探讨了一元微积分中的可导与可微概念,解释了它们在高中与大学数学中的定义,并通过极限理论阐述两者之间的等价关系。可导意味着函数在某点的斜率存在,而可微则是函数变化率的线性近似。通过数学推导证明了在一元函数中,可导与可微是等价的。
摘要由CSDN通过智能技术生成

千呼万唤始出来,失踪人口重新回归啦,emmmm,我的上一期文章还是四个月前发布的,具体没更新的原因后续我会以个人的小故事发出来的,最近也许会高产一些。


之前跟大家讲过极限是数分最最基本的概念,有了它才会有后面那么多的可微、可导、连续等概念。注:本文只讨论一元微积分(多元微积分相比一元的要复杂得多,不仅要考虑每个分量,还要考虑到每个分量之间的联系)

其实大家在高中就已经学过导数的概念,当时是由变化率这个概念提纯出来的概念,在函数图像上也有着特殊的几何含义——斜率,所以可以通过函数图像来判断一个函数的导数是否存在,即是否可导或者可微。如下图所示:

高中函数 f(x) 导数的定义:

f'(x_0)=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{(x_0+\Delta x)-x_0}=\lim_{\Delta x \rightarrow 0}\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=tan\alpha

可以这样理解,函数自变量 x 发生了一个小小的波动 Δx ,那么函数值的变化 f(x+Δx)−f(x) 是否相比与自变量的波动 Δx 成线性呢?即 \frac{f(x+\Delta x)-f(x))}{\Delta x}=k(常数) 是否成立,这里由于变化微小,所以考虑极限定义,如果这个极限存在那么就将它定义为函数 f(x) 在该点的斜率,在几何上,也是切线与 x 轴非负半轴方向夹角的正切值(如上图所示)。

到了大学,定义几乎没变,只是对于条件或许更严格、更专业化而已。如下:

若函数y=f(x)在其定义域中的一点x_0处极限

\lim_{\Delta x \rightarrow 0}{\frac{\Delta y}{\Delta x}}=\lim_{\Delta x \rightarrow 0}{\frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}}存在,则称f(x)x_0处可导,

并称这个极限值为f(x)x_0处的导数,记作f'(x_0)

至此,大家也许会有疑问,本文题目一开始就提出了两个概念,可导vs可微,可微又是什么呢?


可微可以说是从是另一个方面说明函数变化率的概念,分析步骤差不多,如下:

函数自变量 x 发生了一个小小的波动 Δx ,那么函数值的变化 Δy=f(x+Δx)−f(x) 是否相比与自变量的波动 Δx 成线性呢?即 Δy=kΔx(k为常数) 是否成立,跟上面差不多,换成了乘积形式,但是对于数学这却是两种完全不同的形式,这里由于变化微小,所以同样地考虑极限的定义,而且那些微小的不影响函数主要线性部分的因素不应该被忽略,所以会写成 

\Delta y=k \Delta x+o(\Delta x),这里o(\Delta x)代表\Delta x的高阶无穷小,

\lim_{\Delta x \rightarrow 0}{\frac{o(\Delta x)}{\Delta x}}=0,意味着上面的量比下面的量更快地趋于0.

那么可微的准确定义来了

对函数定义域中的一点,若存在一个常数使得当时恒成立关系式则称在处的微分存在,或称在处可微对函数y=f(x)定义域中的一点x_0,若存在一个常数k,使得当Δx→0时恒成立关系式Δy=kΔx+o(Δx)则称f(x)在x0处的微分存在,或称f(x)在x_0处可微.

是这样的,可微呢,可积这一套我们都是学习西方的,是英文翻译过来的。学到后面,你会发现,其实数学上的东西,线性的一般是最简单的,一般都很好研究,但是自然界或者实际中,很多东西往往都是非线性的,所以我们需要对它在极其微小处进行微元线性处理(物理上很多东西都是这样搞出来的),这也就是我们为啥定义微分要取主要线性部分,你再想想现实中,地球是球体,但是你生活的那一小点就是平面啊,也就类似进行了线性化处理。

所以基本从推导形式上就可以看出,对于一元函数这两个定义等价。接下来我们严格推理一下

函数f(x)可导⇔函数f(x)可微

必要性: 可导⇒可微

根据定义,不妨设f(x)在x_0处可导,即有

 f'(x_0)=\lim_{\Delta x\rightarrow 0}{\frac{\Delta y}{\Delta x}},即

\frac{\Delta y}{\Delta x}-f'(x_0)=o(1),从而\\Delta y=f'(x_0)\Delta x+o(\Delta x),

此时k=f'(x_0),即f(x)在x_0处可微.

充分性: 可微⇒可导

根据定义,不妨设f(x)在x_0处可微,即有

 \Delta y=k\Delta x+o(\Delta x),两边同除以\Delta x,有

\frac{\Delta y}{\Delta x}=k+o(1),再令\Delta x\rightarrow 0,则

k=\lim_{\Delta x\rightarrow 0}{\frac{\Delta y}{\Delta x}}此时

k=f'(x_0),即f(x)在x_0处可导.

好的,综上所述,我们基本完成了对于一元函数可微与可导的总结概述。 

如果大家觉得对你有帮助的话,可以关注、收藏、点赞一波。您的支持是对小编继续创作的最大动力。如果大家对这个专栏比较感兴趣的话,还可以关注我的专栏,专门介绍大学数学的学习思想、方法等,全是干货。

 

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rainsley_Math

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值