最近复习到高数的一元函数微分部分 ,可导和可微是两个特别重要也特别容易混淆的概念。所以简单记录一下,便于自己理解,仅供参考。
导数
从物理角度来说(牛顿是从物理学的角度发明出的微积分)某点的导数就是一个该点的瞬时变化率的问题。
几何意义上来说(莱布尼茨从数学角度发明出的微积分),某点的导数是曲线在该点处的切线的斜率。
从定义来看,导数在本质上是一个极限问题。f(x)在
x
0
x_0
x0处的导数
f
(
x
)
ˋ
\grave{f(x)}
f(x)ˋ为:
f ( x ) ˋ = lim Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x \grave{f(x)}=\lim_{\Delta x\to \ 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x)ˋ=limΔx→ 0Δxf(x0+Δx)−f(x0)
若该极限存在, 就说明函数在该点可导。当然我们知道,函数极限也可能不存在,所以该点也就不可导了。
微分:
从数形结合的方式理解:设一正方形边长为x,当边长增加 Δ x \Delta x Δx,面积增加 Δ S = ( x + Δ x ) 2 − x 2 = 2 x Δ x − Δ x 2 \Delta S=(x+\Delta x)^2-x^2=2x\Delta x-\Delta x^2 ΔS=(x+Δx)2−x2=2xΔx−Δx2
当 Δ x → 0 {\Delta x\to \ 0} Δx→ 0时, ( Δ x ) 2 (\Delta x)^2 (Δx)2对于 Δ x \Delta x Δx来说是高阶无穷小,记为 o ( Δ x ) o(\Delta x) o(Δx),可以看作误差, 忽略不计。 2 x Δ x 2x\Delta x 2xΔx才是增量的主要部分,我们叫做主部。
推广至一般函数,对于函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0的某领域内有定义,那么函数增量记为:
Δ
y
=
f
(
x
+
Δ
x
)
−
f
(
x
)
\Delta y=f(x+\Delta x)-f(x)
Δy=f(x+Δx)−f(x)
若存在与
Δ
x
\Delta x
Δx无关的常数
A
A
A使得
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
\Delta y=A\Delta x+o(\Delta x)
Δy=AΔx+o(Δx),那么称
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处可微,微分为
A
Δ
x
A\Delta x
AΔx,即增量的线性主部。记作
d
y
∣
x
=
x
0
=
A
Δ
x
dy\lvert _{x=x_0}=A\Delta x
dy∣x=x0=AΔx。
(其实这里的常数
A
A
A就是
f
(
x
)
f(x)
f(x)在该点处的导数)
又因为
Δ
x
=
d
x
\Delta x=dx
Δx=dx
(这里要理解一下为什么
Δ
x
=
d
x
\Delta x=dx
Δx=dx 其实严格意义上
Δ
x
=
d
x
\Delta x=dx
Δx=dx 因为一个是增量,一个是微分。
根据上面微分的定义 我们可以知道:
d
x
=
A
Δ
x
+
o
(
x
)
dx=A \Delta x+o(x)
dx=AΔx+o(x)
所以他们之间有一个无穷小的误差。我们忽略不计)
d y ∣ x = x 0 = A Δ x = y ( x ) ˋ Δ x = y ( x ) ˋ d x dy\lvert _{x=x_0}=A\Delta x=\grave{y(x)} \Delta x=\grave{y(x)} dx dy∣x=x0=AΔx=y(x)ˋΔx=y(x)ˋdx
d y d x ∣ x = x 0 = y ( x ) ˋ d x d x = y ( x ) ˋ \frac{dy}{dx}\lvert _{x=x_0}=\frac{\grave{y(x)} dx}{dx}=\grave{y(x)} dxdy∣x=x0=dxy(x)ˋdx=y(x)ˋ
通过上面的两个公式我们可以推出一元函数 可微必可导 两者互为充要条件。所以判断
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处是否可微就可以转换成是否可导的问题。
关于可微的含义:我们用线性增量
A
Δ
x
A \Delta x
AΔx 代替复杂增量
Δ
y
\Delta y
Δy,误差为
Δ
y
−
A
Δ
x
=
o
(
x
)
\Delta y - A\Delta x=o(x)
Δy−AΔx=o(x)无穷小,可忽略不计。
几何意义:若 f ( x ) f(x) f(x)在 x 0 x_0 x0处是否可微,则在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可以用切线段(线性增量 A Δ x A\Delta x AΔx)近似替代曲线段(实际复杂增量 Δ y \Delta y Δy)。这个和后面函数在某个定义域内的积分的几何意义联系起来了,也是用线段近似替代曲线。