1、利用mathCAD计算buck反馈电路的环路补偿相位裕度和穿越频率,同时绘制环路补偿伯德bode图。
2、相位裕度Phase Margin=幅频特性曲线增益为0时的相位=6度;
3、系统的相位裕度值越大则阻尼比越大,超调和谐振峰值越小。
4、穿越频率Crossover Frequency=开环系统的幅频特性曲线穿越0dB处的频率=1MHZ;
5、一般地穿越频率wg越大,带宽越大。带宽频率位于 Wg到2Wg之间。于是穿越频率可以和带宽一样对闭环系统的响应速度产生衡量的作用。
6、谐振峰值与闭环系统的阻尼比是负相关的,即阻尼比越大,峰值越小。
7、谐振峰值处对应的频率为谐振频率 。谐振频率和带宽一样反映了闭环系统的响应速度,谐振频率越大,上升时间越小。
8、相位裕量越小,输出过冲越大,那么这是为什么呢?相位裕量越小,则负反馈系统开环传递函数滞后越大,令输入sin(x),经过负反馈的开环传递函数之后,变成了sin(x-θ),经过比较相减得到的误差值为sin(x)-sin(x-θ)。相位角和 -180° 之差被称为相位裕量;
误差值1(相位裕量=135°,相位角θ=45°)
误差值2(相位裕量=45°,相位角θ=135°)
从上图可以明显看出,误差值2(相位裕量=45°,θ=135°) sin(x)-sin(x-135)的误差比较大;
相位裕量越小,信号延迟大,输入信号减去反馈信号的误差值越大,则“输出信号×误差值”也越大,则相当于调控力度增大了,容易产生阻尼振荡。
相位裕量越大,信号延迟小,误差值越小,则“输出信号×误差值”也越小,则相当于调控力度减小了,不容易产生阻尼振荡,从而稳定性提高了。
buck反馈电路的环路补偿及利用mathCAD绘制伯德bode图
于 2024-09-20 18:36:23 首次发布