二元关系——离散数学part 1

二元关系

基本概念

关系是一个集合,有序对是其元素。在有序对中,序是重要的,不可随意安排,我们讨论的有序对仅由两个元素组成,所以称为二元关系
有序对<a,b>中的a称为有序对的第一元,b称为有序对的第二元。
定义一:二元关系是符合某种特定要求的有序对的集合。
笛卡儿乘积:设A,B是集合,由所有以A中元素为第一元,以B中元素为第二元的有序对为元素构成的集合称为A到B的笛卡儿乘积。特别地,A=B时,AxA为集合A上的笛卡尔乘积, A 2 A^2 A2.
定义二:设A,B是集合,R是笛卡尔乘积AxB的子集,则称R为A到B的一个二元关系。
对二元关系R中的元素,若<a,b>∈R,则可记作aRb,若<a,b>∉R,则a R b
定义:设A是集合,R是笛卡尔乘积AxA的子集,则称A为A上的一个二元关系。
定义:设R为A到B的一个二元关系,使<a,b>∈R的所有a构成的集合称为R的前域,记为domR,使<a,b>∈R的所有b构成的集合称为R的值域,记为ranR。
对于|A|=n,|B|=m,则可以定义 2 n m 2^{nm} 2nm个从A到B的二元关系。
对于任何集合,空集合集合本身都是它的子集,这两种集合常称为平凡子集。对于笛卡儿集合的两个平凡子集,空集∅,AxB本身称为集合A到B的空关系全域关系
定义:设R为A上的二元关系,且满足R={<a,a>|a∈A},则称R为A上的恒等关系,并记为 I A I_A IA
二元关系的常见表示方法:①集合的表示方法:列表法,谓词描述法 ②矩阵有向图 (A上的二元关系用有向表示时只需要画|A|个点,而不需要画|A|*|A|个点)

基本类型与判断方法

基本类型

自反
R是A上的二元关系,若对于 ∀ \forall a∈A,<a,a>∈R,则称R为自反的二元关系,也称R具有自反性。
R是A上的自反关系时,关系矩阵 M R M_R MR的对角线元素都为1,关系图每个点都有自环

反自反
R是A上的二元关系,若对于 ∀ \forall a∈A,<a,a>∉R,则称R为反自反的二元关系,也称R具有反自反性。
R是A上的反自反关系时,关系矩阵 M R M_R MR的对角线元素都为0,关系图每个点都没有自环

存在既不是反自反也不是自反的关系,其关系矩阵的对角线元素有1也有0,但不存在既是自反又是反自反的关系

对称
R是A上的二元关系,若每当<a,b>∈R,一定有<b,a>∈R,则称R为对称的二元关系,也称R具有对称性。
R是A上的对称关系时,关系矩阵 M R M_R MR是对称矩阵,关系图中若有a到b的有向边,必有b到a的有向边

反对称
R是A上的二元关系,若每当<a,b>∈R且a≠b,一定有<b,a>∉R,则称R为反对称的二元关系,也称R具有反对称性。
R是A上的反对称关系时,关系矩阵 M R M_R MR是除主对角元素外,关于主对角元素对称的两个元素不同时为1,关系图中若有a到b的有向边,必没有b到a的有向边

存在既不是对称又不是反对称的二元关系,eg 关系矩阵除主对角线元素外,关于主对角线对称的元素有同时为1的,也有不同时为1的;
存在既是对称又是反对称的二元关系,eg 关系矩阵除主对角元素外的元素都为0

传递
R是A上的二元关系,若每当<a,b>∈R且<b,c>∈R,一定有<a,c>∈R,则称R为可传递的二元关系,也称R具有可传递性。

判断方法

由关系矩阵和关系图很容易判断一个二元关系是否具有自反、反自反、对称、反对称性,但是要判断可传递性不能直接由关系矩阵和关系图判断,下面介绍判断可传递性的两种主要方法:
1.
①依次检查关系矩阵每行元素,对于第i行为1的元素 a i j a_{ij} aij,看第j行凡是为1的元素,第i行与其同列的元素是否为1,是则继续检查,否则不可传递;
②对关系矩阵每一个为1的元素进行如下操作: a i j = 1 a_{ij}=1 aij=1,则将第j行的元素加(布尔加)到第i行,关系矩阵有变化则可以判定其不具有可传递性,若对关系矩阵所有为1的元素都进行了该操作后,矩阵都没变化,则关系可传递。(可按行依次进行(按行循环),对每行为1的元素进行该操作,实质也就是对关系矩阵所有为1的元素进行了该操作)
2. M R − M R 2 M_R-M^2_R MRMR2没有负数,则R可传递,否则R不可传递。

等价关系

定义:R是A上的二元关系,若R是自反的,对称的,可传递的二元关系,则称R为A上的等价关系
等价关系实质是一种“同组”关系,把A中的元素按某种特征划分成若干组,每个元素属于一个组且仅属于一个组,并定义A上的二元关系为:同一组的元素以R相关,不同组的元素是无关的。
特征:
①如果把A中的元素按组排列,则等价关系R的矩阵表示中,在对角线上有若干的小方阵,这些小方阵的元素都为1.
②等价关系图形表示的特征:关系图中每一点都有自回路,同一组内的任意两个点都有方向相反的有向边连接。

等价类:设R是A上的等价关系,a是A上的任意元素,由A中所有与a以R相关的元素组成的集合称为a关于R的等价类,记为 [ a ] R [a]_{R} [a]R
注:同一组的元素的等价类相同,即以R相关的元素等价类相同。

商集 :R是A上的等价关系,由关于R的所有不同的等价类为元素组成的集合称为A关于R的商集,记作A/R

集合的划分 :设A是集合, A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是A的子集,且 A 1 ∪ . . . ∪ A n = A A_1∪...∪A_n=A A1...An=A,且 A i ∩ A j A_i∩A_j AiAj=∅(i≠j,i,j=1,2,…,n)
则以 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An为元素构成的集合S={ A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An}称为A的划分,每一个元素 A i A_i Ai称为一个块。

等价类与集合的划分
定理:集合A的划分唯一地确定A上的一个等价关系,反之确定了A上的等价关系也能唯一地确定A上的一个划分,A上等价关系和划分是一一对应的。
A关于R的不同的等价类就是一个个块,商集A/R就是一个A的一个划分,反过来,A的一个划分{ A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An}就相当于A关于某个关系R的商集A/R,每一个块 A i A_i Ai就是一个等价类。

相容关系

定义:设R是集合A上的二元关系,如果R是自反的,对称的,则称R为A上的相容关系。
易见:等价关系是一种特殊的相容关系,即可以传递的相容的关系。
相容关系也可以看作是一种“同组”关系,只是这种“同组关系”允许集合中的元素**“身兼数职”**,等价关系是一个元素必须属于一个组且仅仅属于一个组,而相容关系是一个元素可以属于若干个组。

覆盖:设A是集合, A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An是A的子集,且 A 1 ∪ . . . ∪ A n = A A_1∪...∪A_n=A A1...An=A,则集合C={ A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An}称为A的一个覆盖,每一个元素 A i A_i Ai称为一个覆盖块。

完全覆盖:设C是A的一个覆盖,且对于C中任意覆盖块 A i A_i Ai,不存在C中的其他覆盖块 A j A_j Aj,使得 A i A_i Ai A j A_j Aj的子集,则称C为A上的完全覆盖

完全覆盖与相容关系
定理:设C为A上的完全覆盖,R是A上的二元关系,其定义为:当集合中的元素a,b属于同一个覆盖块,<a,b>∈R,则R为A上的相容关系。
定理表明可以通过A是上的一个完全覆盖确定A上的一个相容关系,下面先引进相容类和最大相容类说明一个给定A上的一个相容关系如何确定A的一个完全覆盖。

相容类:设R是集合A上的相容关系,B是A的子集,若B中任意两个元素都以R相关,则称B为由相容关系R产生的相容类。
最大相容类 :设R为A上的相容关系,B是由R产生的相容类,如果在B中添加任何其他属于A的元素后不再构成相容类,则称B为最大相容类。
利用相容关系的关系图求相容类和最大相容类是非常方便的。
由于相容关系是自反,对称的,所以关系图中每个点都有自回路,每两个相关的点之间都有方向相反的有向边相连,则省略自回路,用无向边代替两条方向相反的有向边,简化关系图。
由相容类定义知,相容类中任意两个元素都是相关的,所以在图中有边相连,这样一个相容类中各点都有无向边连接,即构成一个完全图,这样在要找相容类,只要在简化的关系图中找完全图即可。
要找一个最大相容类只要在关系图中找出一个完全图,该完全图再添加任何别的顶点后不再成为完全图,那么这个完全图的顶点就构成一个最大相容类。

偏序关系

定义:设R为A上的二元关系,若R是自反的,反对称的,可传递的,则称R为A上的偏序关系(或半序关系)
由于偏序关系是自反的,所以每个点都有自环,可省略;由于偏序关系是可传递的,所以当<a,b>∈R,且<b,c>∈R,必有<a,c>∈R,则只画a到b的有向边,b到c的有向边,而省略a到c的有向边,适当位置使得有向边的箭头都向上,这样可省略箭头,经过这些简化后得到的图形称为偏序关系的哈斯图
为了更快,更有效地画出偏序关系的哈斯图,下面介绍“盖住”的概念

盖住:设R是A上的偏序关系,a和b是A中的关系,如果<a,b>∈R,且不存在c,使得<a,c>∈R,<c,b>∈R,则称元素b盖住a.

常把集合A和A上的偏序关系合在一起统称为偏序集,记作(A,R),当<a,b>∈R,常记为a≤b,所以偏序集也常记为(A,≤)

:设(A,≤)是偏序集,B是A的子集,若B中的任意两个元素都有关系,则称B为链。
反链:设(A,≤)是偏序集,B是A的子集,若B中的任意两个元素都没有关系,则称B为反链。
全序集与全序关系:设(A,≤)是偏序集,若A是链,则称(A,≤)是全序集,≤是全序关系。
偏序集中的特殊元素:
1.极大元与极小元
设(A,≤)是偏序集,如果A中存在元素a,使得A中没有其他元素x满足x≤a,则称a为A的极小元
设(A,≤)是偏序集,如果A中存在元素a,使得A中没有其他元素x满足x≥a,则称a为A的极大元

2.最小元与最大元
设(A,≤)是偏序集,如果A中存在元素a,使得对A中任何元素x满足x≥a,则称a为(A,≤)的最小元
设(A,≤)是偏序集,如果A中存在元素a,使得对A中任何元素x满足x≤a,则称a为(A,≤)的最大元

注意:偏序集(A,≤)中的最大元,最小元与极大元,极小元最大的区别在于:最大(小)元必须与A中每个元素都有关系,即可比,而极大(小)元不需要。最大(小)不一定存在,但极大(小)元一定存在

偏序集(A,≤),A的子集B的极大(小)元,最大(小)元:
设(A,≤)是偏序集,B是A的子集,如果B中存在元素a,使得B中没有其他元素x满足x≤a,则称a为B的极小元
设(A,≤)是偏序集,B是A的子集,如果B中存在元素a,使得B中没有其他元素x满足x≥a,则称a为B的极大元
设(A,≤)是偏序集,B是A的子集,如果B中存在元素a,使得B中任何元素x满足x≥a,则称a为B的最小元
设(A,≤)是偏序集,B是A的子集,如果B中存在元素a,使得B中任何元素x满足x≤a,则称a为B的最大元

上界,下界
设(A,≤)是偏序集,B是A的子集,如果A中存在元素a,使得B中任何元素x满足x≥a,则称a为子集B的下界;
设(A,≤)是偏序集,B是A的子集,如果A中存在元素a,使得B中任何元素x满足x≤a,则称a为子集B的上界。

上确界,下确界
设(A,≤)是偏序集,B是A的子集,a是B的上界,如果对于B的任何上界x都有x≥a,则称a为子集B的最小上界,即上确界,记作sup(B)=a;
设(A,≤)是偏序集,B是A的子集,a是B的下界,如果对于B的任何下界x都有x≤a,则称a为子集B的最大下界,即下确界,记作inf(B)=a;
注意:上(下)界不一定存在,它要和B中元素都可比,且有上(下)界不一定有上(下)确界,因为上(下)确界要求和其他上(下)界都可比。

复合关系

R是A到B的二元关系,S是B到C的二元关系,则R和S的复合记作R○S,它是A到C的二元关系,仅当aRb,且bRc,则<a,c>∈R○S。
复合关系的矩阵表示 M R ○ S = M R M S M_{R○S}=M_RM_S MRS=MRMS,矩阵的乘法为布尔乘,即其中的加法使用布尔加。

设R为A上的二元关系,若R包含 R 2 R^2 R2,则R是可传递的,由此得到判断R是否为可传递的一个方法: M R − M R 2 = M R − M R 2 M_R-M_{R^2}=M_R-M^2_R MRMR2=MRMR2没有负数出现,则R为可传递,否则为不可传递

复合关系证明关系的自反,反自反,对称,反对称,可传递的性质可充分结合复合关系和这些性质的定义证明。
复合关系常用的<a,b>∈R○S,则存在x,aRx,xSb

逆关系

设R为A到B的二元关系,如果把R中的每一个有序对中的元素顺序互换,所得到的B到A的二元关系称为R的逆关系,记作 R ~ \tilde{R} R~
R的关系矩阵为 M R M_R MR,则 R ~ \tilde{R} R~的关系矩阵为 M R T M^T_R MRT,即 M R M_R MR的转置。
把R的关系图中有向边的方向都颠倒则可以得到 R ~ \tilde{R} R~的关系图。

R是A到B的二元关系,S是B到C的二元关系,则 R ○ S ~ \tilde{R○S} RS~= S ~ \tilde{S} S~ R ~ \tilde{R} R~
R是自反的(反自反、对称、反对称、可传递),则 R ~ \tilde{R} R~也是自反的(反自反、对称、反对称、可传递)

关系的闭包运算

闭包的定义:R是A上的二元关系,R的自反(对称,传递)闭包R’也是A上的二元关系,且满足:
1.R’是自反(对称,传递)的
2.R’包含R
3.对于任何自反(对称,传递)的二元关系R’’,如果R’’包含R,则必有R’’包含R’
由上述定义可知,R的自反(对称,传递)闭包是含有R且具有自反(对称,传递)的“最小”的二元关系
通常把二元关系R的自反闭包记作r(R),对称闭包记为s(R),传递闭包记为t(R)。

r(R)的求法:只需要把所有<a,a>∉R的有序对补上即可
s(R)的求法:每当<a,b>∈R,而<b,a>∉R,把有序对<b,a>添加到R上去即可
求r(R),s(R)缺什么补什么即可

t(R)的求法
法一:Warshall算法
|A|=n,R是A上的二元关系
算法:
for j=1:n
for i=1:n
if m i j = 1 m_{ij}=1 mij=1
M R ( i , : ) = M R ( i , : ) + M ( j , : ) ; M_R(i,:)=M_R(i,:)+M(j,:); MR(i,:)=MR(i,:)+M(j,:); (布尔加)
end
end
end
法二: t ( R ) = M R + M R 2 + . . . . + M R n t(R)=M_R+M^2_R+....+M^n_R t(R)=MR+MR2+....+MRn

  • 9
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yun_gao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值