离散数学序关系与相容关系

偏序与拟序

偏序小于等于 拟序小于
在这里插入图片描述
拟序关系:
在这里插入图片描述
在这里插入图片描述
全序
在这里插入图片描述
小于等于关系是 全序关系
整除关系““|” 不是全序关系

哈斯图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最小元最大元 极大元极小元

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
最大元最小元是B集合中的,上界下界可以是存在于A集合中B集合不存在的
在这里插入图片描述
在这里插入图片描述
注意B中也可以有上界,上界可以不唯一
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意: 上、下界未必存在,存在时又未必唯一。
在有上界、下界时,最小上界和最大下界也未必唯一

良序关系

在这里插入图片描述
定理6.2.3
每个良序集合,一定是存在最小元素 的全序集合。
在这里插入图片描述
在这里插入图片描述

相容关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相容类
在这里插入图片描述
注意相容类是一个集合,其中的元素不是二元关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意x1与x5之间没有边连结

完全覆盖

在这里插入图片描述

### 离散数学中的关系知识点详解 #### 1. 基本概念 在离散数学中,**关系**是一种重要的基本结构。给定两个集合 \(A\) 和 \(B\),\(A \times B\) 表示它们的笛卡尔积,即由所有可能的偶组成的集合。如果某个子集 \(R \subseteq A \times B\) 被定义,则称其为从 \(A\) 到 \(B\) 的二元关系[^2]。 #### 2. 特殊性质的关系分类 以下是几种常见的具有特定性质的关系: - **自反性 (Reflexive)** 如果对于所有的 \(a \in A\),都有 \((a, a) \in R\),则称 \(R\) 是自反的[^3]。 - **对称性 (Symmetric)** 若对于任意的 \(a, b \in A\),\((a, b) \in R\) 当且仅当 \((b, a) \in R\),则称 \(R\) 是对称的。 - **传递性 (Transitive)** 如果对于任意的 \(a, b, c \in A\),满足 \((a, b) \in R\) 并且 \((b, c) \in R\),那么必有 \((a, c) \in R\),则称 \(R\) 是传递的[^2]。 - **反对称性 (Antisymmetric)** 若对于任意的 \(a, b \in A\),如果有 \((a, b) \in R\) 以及 \((b, a) \in R\),则必然 \(a = b\),这种情况下称 \(R\) 是反对称的[^5]。 #### 3. 特殊类型的关系 基于上述性质,可以进一步定义一些特殊的二元关系类别: - **等价关系 (Equivalence Relation)** 同时具备自反性、对称性和传递性的关系称为等价关系。它通常用于将一个集合划分为若干不相交的子集(等价类)。通过等价类的概念还可以引入商集的概念。 - **偏关系 (Partial Order Relation)** 满足自反性、反对称性和传递性的关系被称为偏关系。它可以用来表示某些元素之间的一种顺关系,在此基础之上可以通过哈斯图直观展示这些关系[^5]。 - **全关系 (Total Order Relation)** 这是在偏的基础上更严格的形式,其中任何一对不同的元素都可以比较大小。换句话说,除了偏的要求外,还要求每一对不同元素都可比。 - **相容关系 (Compatibility Relation)** 如果某关系既是对称又是自反的,则该关系被命名为相容关系。 #### 4. 函数作为特殊形式的关系 函数实际上也可以看作一种特殊类型的二元关系。具体来说,设 \(f : X \to Y\) 是一个函数,这意味着每一个输入值 \(x \in X\) 至少对应唯一的一个输出值 \(y \in Y\)。根据这一特性,我们可以区分三种主要的函数类型: - **单射 (Injective Function)** 单射是指每个 \(y \in Y\) 最多有一个对应的 \(x \in X\)。也就是说,不同的输入不会产生相同的输出[^4]。 - **满射 (Surjective Function)** 满射意味着对于每一个 \(y \in Y\),至少存在一个 \(x \in X\) 使得 \(f(x) = y\) 成立[^4]。 - **双射 (Bijective Function)** 只要一个函数既是单射又是满射,就称之为双射。此时,这个函数拥有唯一的逆函数 \(f^{-1}\),并且 \(f^{-1}\) 也是一个双射函数[^4]。 ```python def is_bijective(f, domain, codomain): """ Check if the function `f` from set `domain` to set `codomain` is bijective. Args: f (dict): The mapping of elements as {input: output}. domain (set): Set representing all possible inputs. codomain (set): Set representing all possible outputs. Returns: bool: True if `f` is both injective and surjective, False otherwise. """ # Check Injectivity values = list(f.values()) if len(values) != len(set(values)): return False # Check Surjectivity if not set(codomain).issubset(set(values)): return False return True ``` #### 性质间的组合应用 理解各种关系及其属性有助于解决实际问题,比如数据库查询优化、算法设计等方面都会频繁涉及这些理论知识。例如,在构建社交网络模型时,朋友关系往往体现为对称和自反的特点;而在分析任务调度或者依赖管理场景下,则更多关注于偏甚至全这样的约束条件[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值