关于async/await、promise和setTimeout执行顺序

前段时间领导给我们出了一道题,关于async/await、promise和setTimeout的执行顺序,网上查了查资料,这是头条的一道笔试题,记录一下,加深理解。

题目如下:

async function async1() {
	console.log('async1 start');
	await async2();
	console.log('asnyc1 end');
}
async function async2() {
	console.log('async2');
}
console.log('script start');
setTimeout(() => {
	console.log('setTimeOut');
}, 0);
async1();
new Promise(function (reslove) {
	console.log('promise1');
	reslove();
}).then(function () {
	console.log('promise2');
})
console.log('script end');

执行结果:

script start
async1 start
async2
promise1
script end
asnyc1 end
promise2
setTimeOut

首先,我们先来了解一下基本概念:


js EventLoop 事件循环机制:

JavaScript的事件分两种,宏任务(macro-task)微任务(micro-task)

  • 宏任务:包括整体代码script,setTimeout,setInterval
  • 微任务:Promise.then(非new Promise),process.nextTick(node中)

  • 事件的执行顺序,是先执行宏任务,然后执行微任务,这个是基础,任务可以有同步任务和异步任务,同步的进入主线程,异步的进入Event Table并注册函数,异步事件完成后,会将回调函数放入Event Queue中(宏任务和微任务是不同的Event Queue),同步任务执行完成后,会从Event Queue中读取事件放入主线程执行,回调函数中可能还会包含不同的任务,因此会循环执行上述操作。

注意: setTimeOut并不是直接的把你的回掉函数放进上述的异步队列中去,而是在定时器的时间到了之后,把回掉函数放到执行异步队列中去。如果此时这个队列已经有很多任务了,那就排在他们的后面。这也就解释了为什么setTimeOut为什么不能精准的执行的问题了。setTimeOut执行需要满足两个条件:

1. 主进程必须是空闲的状态,如果到时间了,主进程不空闲也不会执行你的回掉函数 
2. 这个回掉函数需要等到插入异步队列时前面的异步函数都执行完了,才会执行 

 上面是比较官方的解释,说一下自己的理解吧:

了解了什么是宏任务和微任务,就好理解多了,首先执行 宏任务 => 微任务的Event Queue => 宏任务的Event Queue


promise、async/await

  1. 首先,new Promise是同步的任务,会被放到主进程中去立即执行。而.then()函数是异步任务会放到异步队列中去,那什么时候放到异步队列中去呢?当你的promise状态结束的时候,就会立即放进异步队列中去了。

  2. 带async关键字的函数会返回一个promise对象,如果里面没有await,执行起来等同于普通函数;如果没有await,async函数并没有很厉害是不是
  3. await 关键字要在 async 关键字函数的内部,await 写在外面会报错;await如同他的语意,就是在等待,等待右侧的表达式完成。此时的await会让出线程,阻塞async内后续的代码,先去执行async外的代码。等外面的同步代码执行完毕,才会执行里面的后续代码。就算await的不是promise对象,是一个同步函数,也会等这样操作

步入正题:

 根据图片显示我们来整理一下流程:

1、执行console.log('script start'),输出script start
2、执行setTimeout,是一个异步动作,放入宏任务异步队列中;
3、执行async1(),输出async1 start,继续向下执行;
4、执行async2(),输出async2,并返回了一个promise对象,await让出了线程,把返回的promise加入了微任务异步队列,所以async1()下面的代码也要等待上面完成后继续执行;
5、执行 new Promise,输出promise1,然后将resolve放入微任务异步队列;
6、执行console.log('script end'),输出script end
7、到此同步的代码就都执行完成了,然后去微任务异步队列里去获取任务
8、接下来执行resolve(async2返回的promise返回的),输出了async1 end
9、然后执行resolve(new Promise的),输出了promise2
10、最后执行setTimeout,输出了settimeout


以上为自己的见解,如错误请及时指正,谢谢!!!

要使用R复现这篇孟德尔随机化(Mendelian Randomization, MR)分析文章中的结果,可以按照以下步骤进行: ### 1. 安装加载必要的包 首先,你需要安装并加载一些必要的R包,这些包用于处理GWAS数据执行MR分析。 ```R install.packages("TwoSampleMR") library(TwoSampleMR) ``` ### 2. 下载准备GWAS数据 你需要从论文中提到的数据源下载GWAS汇总统计数据,并将其准备好用于MR分析。这里以骨密度(BMD)骨折为例。 #### 2.1 下载GWAS数据 你可以从以下网站下载GWAS数据: - **骨密度(BMD)**:[GEFOS](http://www.gefos.org/) -epidemiology/) - **精神疾病(MDs)**:[GWAS Catalog](https://www.ebi.ac.uk/gwas/downloads/summary-statistics) 假设你已经下载了这些数据并保存为文件。 #### 2.2 准备GWAS数据 将下载的GWAS数据读入R,并进行预处理。 ```R # 读取GWAS数据 bmd_data <- read.table("path/to/bmd_data.txt", header = TRUE) fracture_data <- read.table("path/to/fracture_data.txt", header = TRUE) schizophrenia_data <- read.table("path/to/schizophrenia_data.txt", header = TRUE) # 进行质量控制 bmd_data <- clump_data(bmd_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) fracture_data <- clump_data(fracture_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) schizophrenia_data <- clump_data(schizophrenia_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) ``` ### 3. 执行两样本MR分析 使用`TwoSampleMR`包中的函数来执行MR分析。 ```R # 获取遗传工具变量 exposure_data <- extract_instruments(schizophrenia_data) # 获取结局数据 outcome_bmd <- harmonise_data(exposure_data, bmd_data) outcome_fracture <- harmonise_data(exposure_data, fracture_data) # 执行MR分析 mr_result_bmd <- mr(outcome_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) mr_result_fracture <- mr(outcome_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) # 查看结果 print(mr_result_bmd) print(mr_result_fracture) ``` ### 4. 结果解释 输出的结果会显示不同方法下的MR估计值及其显著性水平。你可以通过查看`mr_result_bmd``mr_result_fracture`来解释结果。 ### 5. 敏感性分析 为了验证结果的稳健性,可以进行敏感性分析。 ```R # 检查异质性多效性 heterogeneity_test <- mr_heterogeneity(outcome_bmd) pleiotropy_test <- mr_pleiotropy Egger(outcome_bmd) # 查看测试结果 print(heterogeneity_test) print(pleiotropy_test) ``` ### 6. 可视化结果 最后,可以使用`forest_plot`函数绘制森林图来可视化结果。 ```R # 绘制森林图 forest_plot(mr_result_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) forest_plot(mr_result_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) ``` ### 总结 以上步骤可以帮助你在R中复现这篇文章中的孟德尔随机化分析。确保你正确地下载处理了所有所需的GWAS数据,并且在每一步都进行了适当的质量控制数据校正。如果有任何问题或需要进一步的帮助,请随时提问。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值