Python自动化炒股:利用PyTorch Lightning和TensorFlow进行深度学习股票价格预测的实战案例
在当今这个数据驱动的世界,股票市场也不例外。投资者和交易员正在寻找新的工具和技术来提高他们的交易策略。深度学习,特别是利用PyTorch Lightning和TensorFlow这样的框架,为股票价格预测提供了一个强大的工具。本文将带你了解如何使用这些工具来构建一个深度学习模型,以预测股票价格。
引言
股票价格预测是一个复杂的问题,因为它涉及到许多变量和非线性关系。深度学习模型,特别是循环神经网络(RNN)和长短期记忆网络(LSTM),在处理时间序列数据方面表现出色,这使得它们成为股票价格预测的理想选择。
准备工作
在开始之前,你需要安装以下库:
pip install torch torchvision torchaudio pytorch-lightning tensorflow pandas yfinance
数据收集
我们使用yfinance
库来获取股票数据。以下是如何获取苹果公司(AAPL)过去几年的股票数据的示例代码:
import yfinance as yf
# 获取苹果公司的股票数据
data = yf.download('AAPL', start='2010-01-01', end='2023-01-01')
数据预处理
在将数据输入到模型之前,我们需要对其进行预处理。这包括归一化和创建时间窗口。
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 归一化数据
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1, 1))
# 创建时间窗口
def create_dataset(dataset, look_back=1):
X, Y = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
X.append(a)
Y.append(dataset[i + look_back, 0])
return np.array(X), np.array(Y)
look_back = 60
X, Y = create_dataset(scaled_data, look_back)
构建模型
我们将使用PyTorch Lightning和TensorFlow来构建两个不同的模型。
使用PyTorch Lightning构建LSTM模型
import torch
import torch.nn as nn
import pytorch_lightning as pl
class LSTMModel(pl.LightningModule):
def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):
super(LSTMModel, self).__init__()
self.hidden_layer_size = hidden_layer_size
self.lstm = nn.LSTM(input_size, hidden_layer_size)
self.linear = nn.Linear(hidden_layer_size, output_size)
self.loss_fn = nn.MSELoss()
def forward(self, x):
lstm_out, _ = self.lstm(x.view(len(x), -1, 1))
predictions = self.linear(lstm_out.view(len(x), -1))
return predictions
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = self.loss_fn(y_hat, y)
self.log('train_loss', loss)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.001)
# 实例化模型
model = LSTMModel(input_size=1, hidden_layer_size=100, output_size=1)
使用TensorFlow构建LSTM模型
import tensorflow as tf
def build_model():
model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(100, return_sequences=True, input_shape=(look_back, 1)),
tf.keras.layers.LSTM(100),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mean_squared_error')
return model
# 实例化模型
model = build_model()
训练模型
使用PyTorch Lightning训练模型
from torch.utils.data import TensorDataset, DataLoader
# 创建数据加载器
train_data = TensorDataset(torch.from_numpy(X), torch.from_numpy(Y))
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
# 训练模型
trainer = pl.Trainer(max_epochs=50)
trainer.fit(model, train_loader)
使用TensorFlow训练模型
# 训练模型
history = model.fit(X, Y, epochs=50, batch_size=64, validation_split=0.2)
模型评估
在训练模型之后,我们需要评估其性能。