聚宽量化vs优矿量化:哪个更适合新手?深度测评!
Hey,股民朋友们,今天咱们来聊聊量化炒股的那些事儿。量化炒股,听起来是不是有点高大上?别急,咱们一步步来,从新手的角度出发,看看聚宽量化和优矿量化这两个平台,哪个更适合你。
聚宽量化:新手友好的量化平台
界面友好度
首先,聚宽量化的界面设计简洁明了,新手上手起来不会感到太复杂。它的操作逻辑比较直观,用户界面友好,对于新手来说,学习曲线相对平缓。
学习资源
聚宽量化提供了丰富的学习资源,包括教程、视频和文档,这些都是新手入门的好帮手。你可以在这里找到从基础到进阶的各种教程,逐步建立起量化交易的知识体系。
社区支持
聚宽量化有一个活跃的社区,新手可以在这里提问、交流心得。社区里的大佬们经常分享自己的策略和经验,对于新手来说,这是一个很好的学习机会。
优矿量化:功能强大的量化平台
功能全面
优矿量化的功能比较全面,适合有一定基础的投资者。它提供了更多的数据接口和更复杂的策略构建工具,对于想要深入研究量化交易的新手来说,可能会感到有些挑战。
策略回测
优矿量化的策略回测功能非常强大,你可以在这里测试自己的交易策略,看看在历史数据上的表现如何。这对于新手来说,是一个很好的实践机会,可以让你更直观地理解策略的有效性。
编程要求
优矿量化对编程的要求相对较高,如果你对Python等编程语言有一定的基础,那么使用优矿量化会得心应手。如果你是个编程新手,可能需要花点时间学习。
哪个更适合新手?
易用性对比
从易用性来看,聚宽量化更适合新手。它的界面友好,学习资源丰富,社区活跃,这些都是新手快速上手的关键因素。
功能对比
如果你对量化交易有更高的追求,想要尝试更复杂的策略,那么优矿量化可能更适合你。它的功能全面,策略回测强大,但需要一定的编程基础。
个人建议
作为一个老股民,我建议新手朋友们可以先从聚宽量化开始。它的易用性和丰富的学习资源可以帮助你快速建立起量化交易的基础知识。当你对量化交易有了一定的理解后,再逐步尝试优矿量化,探索更复杂的策略。
实际操作示例
聚宽量化示例
# 简单的均线策略示例
import jqdata
jqdata.auth('username', 'password') # 替换为你的聚宽账号和密码
# 获取股票数据
df = jqdata.get_price('000001.XSHE', start_date='2020-01-01', end_date='2020-12-31', frequency='daily')
# 计算均线
df['MA5'] = df['close'].rolling(window=5).mean()
df['MA20'] = df['close'].rolling(window=20).mean()
# 生成信号
df['signal'] = 0
df.loc[df['MA5'] > df['MA20'], 'signal'] = 1
df.loc[df['MA5'] < df['MA20'], 'signal'] = -1
# 绘制价格和均线
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.plot(df['close'], label='Close Price')
plt.plot(df['MA5'], label='MA5')
plt.plot(df['MA20'], label='MA20')
plt.legend()
plt.show()
优矿量化示例
# 同样的均线策略示例
from rqalpha.api import *
import pandas as pd
# 初始化函数,设定基准等等
def init(context):
context.stock = '000001.XSHE'
context.window = 20
# 每天开盘前运行
def before_trading_start(context):
# 获取股票的收盘价
close = attribute_history(context.stock, context.window, '1d', ['close'], skip_paused=True)['close'].iloc[-1]
# 计算均线
context.ma20 = close.rolling(window=context.window).mean().iloc[-1]
# 每分钟调用一次
def handle_bar(context, bar_dict):
# 计算MA5
ma5 = bar_dict[context.stock].close.rolling(window=5).mean().iloc[-1]
# 生成信号
if ma5 > context.ma20:
order_target_percent(context.stock, 1)
elif ma5 < context.ma20:
order_target_percent(context.stock, 0)
结语
量化炒股是一个既有趣又有挑战