通过上期学习,大家已经了解了排队论中M/M/s等待制排队模型,但是现实情况中存在系统空间有限的情况。
基于此,本期小编将为大家介绍M/M/s混合制排队模型,包括单服务台混合制模型和多服务台混合制模型,介绍模型的概念以及推导过程等内容。
添加图片注释,不超过 140 字(可选)
单服务台混合制模型
01 基本概念
单服务台混合制模型M/M/1/K是指:
-
顾客的相继到达时间服从参数为λ的负指数分布;
-
服务台个数为1;
-
服务时间V服从参数为μ的负指数分布;
-
系统的空间为K。
首先求平稳状态下队长的分布,由于服务系统最多只能容纳K个顾客(等待位置K-1个),因而有
添加图片注释,不超过 140 字(可选)
然后根据状态分布列出平衡方程:
添加图片注释,不超过 140 字(可选)
结合:
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
可以得到:
故pn=ρnp0,n=1,2,…K,其中:
添加图片注释,不超过 140 字(可选)
由已得到的单服务台混合制排队系统平稳状态下队长的分布,当ρ≠1时,平均队长L为:
添加图片注释,不超过 140 字(可选)
其中,因为当n=0时,npn为0,所以:
添加图片注释,不超过 140 字(可选)
当ρ=1时,平均队长L为:
添加图片注释,不超过 140 字(可选)
类似地,可得到平均排队长Lq为:
添加图片注释,不超过 140 字(可选)
由于排队系统容量有限,只有K-1个排队位置,系统占满时,顾客无法进入系统排队。
假设顾客到达率(单位时间内来到系统的顾客的平均数)为λ,则当系统处于状态K时,顾客不能进入系统,引入顾客损失率pK,即顾客可以进入系统的概率为1-pK。
因此,单位时间内实际可进入系统的顾客的平均数为λe=λ(1-pK)=μ(1-P0),称λe为有效到达率,而pK也被称为顾客损失率,它表示了在来到系统的所有顾客数中不能进人系统的顾客的比例。下面根据Little公式可得:
-
平均逗留时间:
添加图片注释,不超过 140 字(可选)
-
平均等待时间:
添加图片注释,不超过 140 字(可选)
且仍有:
添加图片注释,不超过 140 字(可选)
即平均逗留时间=平均等待时间+平均服务时间。并注意这里的平均逗留时间和平均等待时间都是针对能够进入系统的顾客而言的。
特别地,当K=1时,M/M/1/1为单服务台损失制系统,在上述有关结果中令K=1,可得到:
添加图片注释,不超过 140 字(可选)
02 例题展示
某修理站只有一个修理工,且站内最多只能停放4台待修的机器。设待修机器按Poisson流到达修理站,平均每分钟到达1台;修理时间服从负指数分布,平均每1.25分钟可修理1台,试求该系统的有关指标。
解:
M/M/1/4系统,λ=1,μ=1⁄1.25=0.8,ρ=λ⁄μ=1.25≠1,K=4。
由:
添加图片注释,不超过 140 字(可选)
可知:
添加图片注释,不超过 140 字(可选)
因而,顾客损失率:
添加图片注释,不超过 140 字(可选)
有效到达率:
添加图片注释,不超过 140 字(可选)
平均队长 :
添加图片注释,不超过 140 字(可选)
平均排队长:
添加图片注释,不超过 140 字(可选)
平均逗留时间 :
添加图片注释,不超过 140 字(可选)
平均等待时间:
添加图片注释,不超过 140 字(可选)
多服务台混合制模型
01 基本概念
多服务台混合制模型M/M/s/K是指:
-
到达间隔:泊松分布(参数为到达率);
-
单台服务时间:负指数分布(参数为服务率);
-
服务台数:S;
-
系统容量:K;
-
排队长度(客源):无限;
-
服务规则:FCFS(先到先服务)。
关于M/M/s/K模型与M/M/1/K模型的区别:在M/M/s/K模型中服务器数不少于2台。
在M/M/s/K模型中,注意到顾客平均到达率:
添加图片注释,不超过 140 字(可选)
总服务率:
添加图片注释,不超过 140 字(可选)
所以:
添加图片注释,不超过 140 字(可选)
根据:
添加图片注释,不超过 140 字(可选)
得出其中:
添加图片注释,不超过 140 字(可选)
由平稳分布pn, 可得平均排队长为:
添加图片注释,不超过 140 字(可选)
又由:
添加图片注释,不超过 140 字(可选)
因此:
添加图片注释,不超过 140 字(可选)
且系统空间有限,达到状态K时,无法进入系统,所以必须考虑顾客发有效到达率。对多服务台系统,有效到达率为λe=λ(1-pK)。再利用Little公式可得:
-
平均逗留时间:
添加图片注释,不超过 140 字(可选)
-
平均等待时间:
添加图片注释,不超过 140 字(可选)
平均被占用的服务台数为:
添加图片注释,不超过 140 字(可选)
因此,又有:
添加图片注释,不超过 140 字(可选)
02 例题展示
某汽车加油站设有两台加油机,汽车按 Poisson 流到达,平均每分钟到达 2 辆;汽车加油时间服从负指数分布,平均加油时间为 2 分钟。又知加油站上最多只能停放 3 辆等待加油的汽车,汽车到达时,若已满员,则必须开到别的加油站去,试对该系统进行分析。
解:
该系统为M/M/2/5的排队系统,λ=2,μ=1⁄2=0.5,ρ=λ⁄μ=4,s=2,K=5。
因此,系统空闲的概率:
添加图片注释,不超过 140 字(可选)
顾客损失率:
添加图片注释,不超过 140 字(可选)
加油站内在等待的平均汽车数:
添加图片注释,不超过 140 字(可选)
加油站内的平均汽车数:
添加图片注释,不超过 140 字(可选)
汽车在加油站内平均逗留时间:
添加图片注释,不超过 140 字(可选)
汽车在加油站内平均等待时间:
添加图片注释,不超过 140 字(可选)
被占用的加油机的平均数为:
添加图片注释,不超过 140 字(可选)
03 多服务台损失制系统
当s=K时即为多服务台损失制系统,也称为即时制。同样,在该系统中:
添加图片注释,不超过 140 字(可选)
其中:
添加图片注释,不超过 140 字(可选)
则第s位之后为顾客的损失率:
添加图片注释,不超过 140 字(可选)
该公式也被称为爱尔朗公式,表示到达系统后由于系统空间被占满而不能进入系统的顾客百分比。
此时,平均被占用的服务台数(即正在接受服务的顾客的平均数)为:
添加图片注释,不超过 140 字(可选)
由于是即时制,平均队长即为平均占用的服务台数,则:
添加图片注释,不超过 140 字(可选)
有效到达率:
添加图片注释,不超过 140 字(可选)
平均逗留时间:
添加图片注释,不超过 140 字(可选)
此外,绝对通过能力:
添加图片注释,不超过 140 字(可选)
相对通过能力:
添加图片注释,不超过 140 字(可选)
系统的服务台利用率为:
添加图片注释,不超过 140 字(可选)
以上就是M/M/s混合制排队模型的全部内容了,通过这一节的学习,大家可以尝试对现实生活中的一些实际问题进行练习了!
作者 | 齐鹏 李晓彤
责编 | 王一静
审核 | 徐小峰