算法导论 4.1-5 三种方案求解最大子数组 分别是 分治 暴力 线性

public class FindMaximumSubarray {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        int[] A = {3,-1,-2,3,6,-2,25,-3};
        
        SubscriptSum findMaxSubbary = findMaxSubbary(A, 0, A.length - 1);
        SubscriptSum findMaxSubbary1 = findMaxS(A, 0, A.length - 1);
        SubscriptSum findMaxSline = findMaxSline(A);
        System.out.println(findMaxSubbary.left + "   " + findMaxSubbary.right + " " + findMaxSubbary.sum);
        System.out.println(findMaxSubbary1.left + "   " + findMaxSubbary1.right + " " + findMaxSubbary1.sum);
        System.out.println(findMaxSline.left + "   " + findMaxSline.right + " " + findMaxSline.sum);
    }
    
    //
    public static SubscriptSum findMaxSubbary(int[] A, int low, int high) {
        
        if(high == low ) {
            return new SubscriptSum(low, high, A[low]);
        }else {
            int mid = (high + low) / 2;
            SubscriptSum l = findMaxSubbary(A, low, mid);
            SubscriptSum r = findMaxSubbary(A, mid + 1, high);
            SubscriptSum m = findMaxCrossingSubbary(A, low, mid, high);
            if(l.sum >= r.sum && l.sum >= m.sum) {
                return l;
            }else if(r.sum >= l.sum && r.sum >= m.sum) {
                return r;
            }else {
                return m;
            }
        }
    }
    
    

    
    public static SubscriptSum findMaxCrossingSubbary(int[] A, int low, int mid, int high) {
        int leftSum = 0;
        int rightSum = 0;
        
        int maxleftScrip = Integer.MIN_VALUE;
        int maxRightScrip = Integer.MAX_VALUE;
        int sum = 0;
        for(int i = mid; i >= low; i--) {
            sum = sum + A[i];
            if(sum > leftSum) {
                leftSum = sum;
                maxleftScrip = i;
            }
        }
        sum = 0;
        for(int i = mid+1; i <= high; i++) {
            sum = sum + A[i];
            if(sum > rightSum) {
                rightSum = sum;
                maxRightScrip = i;
            }
        }
        
        return new SubscriptSum(maxleftScrip, maxRightScrip, leftSum + rightSum);
    }
    //暴力法
    public static SubscriptSum findMaxS(int[] A, int low, int high) {
        int sum = 0;
        int Max = 0;
        int left = Integer.MIN_VALUE;
        int right = Integer.MAX_VALUE;
        Max = A[0];
        left = 0;
        right = 0;
        for(int i = 0; i < A.length; i++) {
            sum = A[i];
            if(sum > Max) {
                Max = sum;
                left = i;
                right = i;
            }
            for(int j = i +1; j < A.length; j++) {
                sum += A[j];
                if(sum >= Max) {
                    Max = sum;
                    left = i;
                    right =j;
                }
                
            }
        }
        return new SubscriptSum(left, right, Max);
    }
    //线性法
    public static SubscriptSum findMaxSline(int[] A) {
        int max = 0;
        int left = 0;
        int right = 0;
        
        int passibleMax = 0;
        int passibleLeft = 0;
        int passibleRight = 0;
        
        boolean newSubArray = true;
        for(int i = 0; i < A.length; i++) {
            
            if(newSubArray) {
                if(A[i] > 0) {
                    passibleLeft = i;
                    passibleRight = i;
                    newSubArray = false;
                }
            }
            
            if(!newSubArray) {
                
                passibleMax += A[i];
                
                if(passibleMax > max) {
                    max = passibleMax;
                    left = passibleLeft;
                    right = i;
                }
                if(passibleMax <= 0) {
                    newSubArray = true;
                    passibleMax = 0;
                }
            }
            
            
        }
        
        return new SubscriptSum(left, right, max);
    }
    
}

class SubscriptSum{
    public int left;
    public int right;
    public int sum;
    public SubscriptSum(int left, int right, int sum) {
        this.left = left;
        this.right = right;
        this.sum = sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值