算法导论第四章4.1-5 dp解法

题目:

使用如下思想为最大子数组问题设计一个非递归的、线性时间的算法。从数组的左边界开始,由左至右处理,记录到目前为止已经处理过的最大子数组。若已知A[1…j]的最大子数组,基于如下性质将解扩展为A[1…j+1]的最大子数组:A[1…j+1]的最大子数组要么是A[1…j]的最大子数组,要么是某个子数组A[i,…,j+1] ( 1 ≤ i ≤ j + 1 1\leq i\leq j+1 1ij+1)。在已知A[1…j]的最大子数组的情况下,可以在线性时间内找出形如A[i…j+1]的最大子数组。

我们设置dp为当前计算的连续子串的值,res为目前最大的连续子串的值。其中dp+a[i]的结果只能有两种

  1. dp+a[i]<a[i]

    这个时候,a[i]前面的连续子串可以看做一个值了,此时从该值开始向后的连续子串的值的大小将永远不会超过a[i]开始向后的连续子串的值的大小。

    举个例子:13 -3 -25 20,……

    这个例子中以13开始的一种延伸到20往后的子串的大小将始终小于20开始的往后延伸的子串的大小。因此最大子数组就不用考虑以13为开始以20往后的数为结尾的了

  2. dp+a[i] ≥ \geq a[i]

    这个时候,我们就让dp加上a[i],同时让该结果和已经记录到的最大的结果进行比较,如果大于原先记录的结果,就更新最大子数组的值

上面的方法运用到了dp(动态规划)的思想,具有无后效性和最优子结构的特性

  • 最优子结构:就是大问题的最优解可以由小问题的最优解来推导出,这个性质叫做最优子结构性质。在我们的题目中,最终算出的最大连续子串可以由前面的已经算出的最大连续子串推导出
  • 无后效性:如果给定某一阶段的状态,则在这一阶段以后的过程的发展不受这阶段以前各状态的影响。在本例中我们通过小问题的最优解来推导出大问题的最优解时,不需要再考虑小的最优解是怎么算出的了。
    代码如下
#include<iostream>
using namespace std;
int*o=new int[2];//用来记录最大连续子数组的下标
int FIND_MAX_SUBARRAY(int a[],int n)
{
   int dp=a[0];
   int res=a[0];
  for(int i=1;i<n;++i)
  {
      if(dp+a[i]>a[i])
      {
          dp+=a[i];
          if(dp>res)
          {
            o[1]=i;
             res=dp;
          }
         
      }
      else
      dp=a[i];
    
  }
  int i;
  for(int s=i=o[1];s<res;--i)
  {
     s+=a[i];
  }//最后一步中i多减了一次,应该加回来
  o[0]=i+1;
  return res;
}
int main() 
{
  int a[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7};
  int i=FIND_MAX_SUBARRAY(a,sizeof(a)/sizeof(int));
  cout<<i<<endl;
  cout<<o[0]<<" "<<o[1]<<endl;
  return 0;
}



或者下面这种形式,更加形象的显示出dp是从小问题的最优解推导出大问题的最优解(也就是所谓的最优子结构的性质)

#include<iostream>
using namespace std;
int*o=new int[2];//用来记录值
int max(int a,int b)
{
  return a>b?a:b;
}
int FIND_MAX_SUBARRAY(int a[],int n)
{
   int dp=a[0];
   int res=a[0];
  for(int i=1;i<n;++i)
  {
      dp=max(dp+a[i],a[i]);
      if(dp>res)
      {
          o[1]=i;
          res=dp;
      }
     
    
  }
  int i;
  for(int s=i=o[1];s<res;--i)
  {
     s+=a[i];
  }//最后一步中i多减了一次,应该加回来
  o[0]=i+1;
  return res;
}
int main() 
{
  int a[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7};
  int i=FIND_MAX_SUBARRAY(a,sizeof(a)/sizeof(int));
  cout<<i<<endl;
  cout<<o[0]<<" "<<o[1]<<endl;
  return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值