算法导论第四章4.1-5 dp解法

题目:

使用如下思想为最大子数组问题设计一个非递归的、线性时间的算法。从数组的左边界开始,由左至右处理,记录到目前为止已经处理过的最大子数组。若已知A[1…j]的最大子数组,基于如下性质将解扩展为A[1…j+1]的最大子数组:A[1…j+1]的最大子数组要么是A[1…j]的最大子数组,要么是某个子数组A[i,…,j+1] ( 1 ≤ i ≤ j + 1 1\leq i\leq j+1 1ij+1)。在已知A[1…j]的最大子数组的情况下,可以在线性时间内找出形如A[i…j+1]的最大子数组。

我们设置dp为当前计算的连续子串的值,res为目前最大的连续子串的值。其中dp+a[i]的结果只能有两种

  1. dp+a[i]<a[i]

    这个时候,a[i]前面的连续子串可以看做一个值了,此时从该值开始向后的连续子串的值的大小将永远不会超过a[i]开始向后的连续子串的值的大小。

    举个例子:13 -3 -25 20,……

    这个例子中以13开始的一种延伸到20往后的子串的大小将始终小于20开始的往后延伸的子串的大小。因此最大子数组就不用考虑以13为开始以20往后的数为结尾的了

  2. dp+a[i] ≥ \geq a[i]

    这个时候,我们就让dp加上a[i],同时让该结果和已经记录到的最大的结果进行比较,如果大于原先记录的结果,就更新最大子数组的值

上面的方法运用到了dp(动态规划)的思想,具有无后效性和最优子结构的特性

  • 最优子结构:就是大问题的最优解可以由小问题的最优解来推导出,这个性质叫做最优子结构性质。在我们的题目中,最终算出的最大连续子串可以由前面的已经算出的最大连续子串推导出
  • 无后效性:如果给定某一阶段的状态,则在这一阶段以后的过程的发展不受这阶段以前各状态的影响。在本例中我们通过小问题的最优解来推导出大问题的最优解时,不需要再考虑小的最优解是怎么算出的了。
    代码如下
#include<iostream>
using namespace std;
int*o=new int[2];//用来记录最大连续子数组的下标
int FIND_MAX_SUBARRAY(int a[],int n)
{
   int dp=a[0];
   int res=a[0];
  for(int i=1;i<n;++i)
  {
      if(dp+a[i]>a[i])
      {
          dp+=a[i];
          if(dp>res)
          {
            o[1]=i;
             res=dp;
          }
         
      }
      else
      dp=a[i];
    
  }
  int i;
  for(int s=i=o[1];s<res;--i)
  {
     s+=a[i];
  }//最后一步中i多减了一次,应该加回来
  o[0]=i+1;
  return res;
}
int main() 
{
  int a[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7};
  int i=FIND_MAX_SUBARRAY(a,sizeof(a)/sizeof(int));
  cout<<i<<endl;
  cout<<o[0]<<" "<<o[1]<<endl;
  return 0;
}



或者下面这种形式,更加形象的显示出dp是从小问题的最优解推导出大问题的最优解(也就是所谓的最优子结构的性质)

#include<iostream>
using namespace std;
int*o=new int[2];//用来记录值
int max(int a,int b)
{
  return a>b?a:b;
}
int FIND_MAX_SUBARRAY(int a[],int n)
{
   int dp=a[0];
   int res=a[0];
  for(int i=1;i<n;++i)
  {
      dp=max(dp+a[i],a[i]);
      if(dp>res)
      {
          o[1]=i;
          res=dp;
      }
     
    
  }
  int i;
  for(int s=i=o[1];s<res;--i)
  {
     s+=a[i];
  }//最后一步中i多减了一次,应该加回来
  o[0]=i+1;
  return res;
}
int main() 
{
  int a[]={13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7};
  int i=FIND_MAX_SUBARRAY(a,sizeof(a)/sizeof(int));
  cout<<i<<endl;
  cout<<o[0]<<" "<<o[1]<<endl;
  return 0;
}



  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
算法导论第16章16.2-5题目描述: 证明:在所有的用于求解单源最短路径问题算法中,Bellman-Ford算法是唯一一个能够处理权值可以是负数的图的算法。 证明如下: 首先,给定一个图G和一个源节点s,我们假设该图G中存在至少一条从源节点s到另一个节点v的路径,使得该路径上至少有一条边的权值为负数。我们的任务是要找到一条从源节点s到节点v的最短路径。 考虑Bellman-Ford算法的实现过程。该算法通过迭代更新每个节点的松弛值来找到最短路径。在算法的每一次迭代中,我们对所有的边进行一次松弛操作。如果图中存在一条从源节点s到节点v的最短路径,那么这条路径上的所有边都会被松弛,且最终计算出的节点v的最短路径长度将会是这条最短路径的长度。 现在我们考虑一种情况:假设在算法的第k次迭代中,我们已经找到了从源节点s到节点v的长度为k的最短路径。此时考虑该最短路径的最后一条边(u,v),且该边的权值为负数。由于在Bellman-Ford算法中,我们是对所有边进行松弛操作的,因此在第k+1次迭代中,我们一定会通过这条边(u,v)来进行松弛操作。此时,由于(u,v)的权值为负数,因此算法将会通过这条边来缩短v的距离值,使得v的距离值变成小于k的某个值。这就意味着我们找到了一条从源节点s到v的更短的路径,与假设矛盾。 因此,我们得出结论:在所有的用于求解单源最短路径问题算法中,Bellman-Ford算法是唯一一个能够处理权值可以是负数的图的算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值