杭电上的汉诺塔系列

汉诺塔II

Problem Description
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。
  Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
 
Input
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
 
Output
对于每组数据,输出一个数,到达目标需要的最少的移动数。
 
Sample Input
  
  
1 3 12
 
Sample Output
  
  
1 5 81

 

/*
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,
我们将移完盘子的任务分为三步:
(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x];
(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱
     上的盘小) (典型的汉诺塔就是一共3个柱子,依靠一个柱子挪到第三个的过程,公式是2^n-1) 
     移动方式相当于是一个经典汉诺塔,即这个过程需要的步数为2^(n-x)-1
(3)将c柱上的x个盘依靠a,b柱移到d柱上,这个过程需要的步数为F[x];
任务完成。
故完成任务所需要的总的步数F[n]=F[x]+2^(n-x)-1+F[x]=2*F[x]+2^(n-x)-1;
但这还没有达到要求,题目中要求的是求最少的步数,易知上式,随着x的不同取值,对于同一个n,
也会得出不同的F[n]。即实际该问题的答案应该min{2*F[x]+2^(n-x)-1},其中1<=x<=n;
在用高级语言实现该算法的过程中,我们可以用循环的方式,遍历x的各个取值,
并用一个标记变量min记录x的各个取值中F[n]的最小值。

典型的汉诺塔的公式是2^n-1   。迭代公式是f(x)=2f(x-1)+1
*/
#include<stdio.h>
#include<math.h>
int main()
{
    int n,f[66];//一个柱子上的盘子依靠两个柱子移动到第四个柱子上所用的步数
    f[1]=1;
    f[2]=3;                   
    for(int i=3;i<=65;i++)     //实质上是打表
    {
           int min=99999999;
           for(int x=1;x<i;x++)
           {
              if (2*f[x] + pow(2.0,i-x) -1 <min)  min=2*f[x] + pow(2.0,i-x)-1;
           }
           f[i]=min;
    }
    while(~scanf("%d",&n))   //不要把表打在while(n--)里面,否则每个n都要执行一次,肯定会超时
    {
       printf("%d\n",f[n]);
    }
    return 0;
}

 

 

 

 

汉诺塔III

Problem Description
约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的上面。
现在我们改变游戏的玩法,不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允许大盘放到下盘的上面。
Daisy已经做过原来的汉诺塔问题和汉诺塔II,但碰到这个问题时,她想了很久都不能解决,现在请你帮助她。现在有N个圆盘,她至少多少次移动才能把这些圆盘从最左边移到最右边?
 
Input
包含多组数据,每次输入一个N值(1<=N=35)。
 
Output
对于每组数据,输出移动最小的次数。
 
Sample Input
  
  
1 3 12
 
Sample Output
  
  
2 26 531440

 

/*
分析:要想把第n个盘从1移到3,需要3个步骤 :
1.)把前n-1个从1移动3  .

2.)第n个盘要从1->2->3经历2步.

3.)而前n-1个盘需要先 3->1  ( 这是为了给 第n个盘让路 ), 最后再 1->3。
∴f(n) = 3 × f(n-1) + 2;
f(1) = 2;
这样我们就得到了这一题的递推公式, 当然我们可以做进一步的优化 , 优化方法如下: 
      f(n) = 3 *f(n-1) + 2
      f(1) = 2
      =>
      f(n) + 1 = 3 × [f(n-1) + 1]
      =>
      f(n) = 3n - 1
*/

#include<stdio.h>
#include<math.h>
__int64 han(int n)         //double位数不够__int64用,所以WA
{
    return pow(3.0,n)-1;    //返回值是double型
}
int main()
{
    int t;
    while(~scanf("%d",&t))
    {
       printf("%I64d\n",han(t));
    }
    return 0;
}


#include<stdio.h>
#include<math.h>
int main()
{
    int t;
    while(~scanf("%d",&t))
    {
     __int64 a=1;
     for(int b=0;b<t;b++)   //只好这样写了
     a=a*3;
       printf("%I64d\n",a-1);
    }
    return 0;
}

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值