Tempter of the Bone
The maze was a rectangle with sizes N by M. There was a door in the maze. At the beginning, the door was closed and it would open at the T-th second for a short period of time (less than 1 second). Therefore the doggie had to arrive at the door on exactly the T-th second. In every second, he could move one block to one of the upper, lower, left and right neighboring blocks. Once he entered a block, the ground of this block would start to sink and disappear in the next second. He could not stay at one block for more than one second, nor could he move into a visited block. Can the poor doggie survive? Please help him.
'X': a block of wall, which the doggie cannot enter;
'S': the start point of the doggie;
'D': the Door; or
'.': an empty block.
The input is terminated with three 0's. This test case is not to be processed.
4 4 5 S.X. ..X. ..XD .... 3 4 5 S.X. ..X. ...D 0 0 0
NO YES
算是第一道真正的搜索题吧,用到了剪枝
下面是奇偶剪枝的介绍(谢谢大牛的解释)
转自:http://blog.csdn.net/iaccepted/article/details/22997299
描述
奇偶剪枝是数据结构的搜索中,剪枝的一种特殊小技巧。
现假设起点为(sx,sy),终点为(ex,ey),给定t步恰好走到终点,
s | ||||
| | ||||
| | ||||
| | ||||
+ | — | — | — | e |
如图所示(“|”竖走,“—”横走,“+”转弯),易证abs(ex-sx)+abs(ey-sy)为此问题类中任意情况下,起点到终点的最短步数,记做step,此处step1=8;
s | — | — | — | |
— | — | + | ||
| | + | |||
| | ||||
+ | — | — | — | e |
如图,为一般情况下非最短路径的任意走法举例,step2=14;
step2-step1=6,偏移路径为6,偶数(易证);
推广之,若 t-[abs(ex-sx)+abs(ey-sy)] 结果为非偶数(奇数),则无法在t步恰好到达;
返回false;
反之亦反。
0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
我们现假设从 0 开始走,则不难证明,
从任意 0 走到任意 1 始终是奇数步;
从任意 0 走到任意 0 始终是偶数步;
引用描述里的“例子”, s 到 e 的最短步数为 t (当然你也可以理解成此时到终点刚好剩余 t 步等等)。
则,我们从 s 到 e 的步数之和(或者说总距离)总可以表示成 sum= t + extra ( extra>=0 ),其中 extra 表示额外的步数。[2]
比如“例子”里面的,做例1吧
s | — | — | — | |
— | — | + | ||
| | + | |||
| | ||||
+ | — | — | — | e |
此时 t=8,sum=14,所以我们容易得到 extra=6。也就是说按照这个走法,需要在最短的步数上再走额外的 6 步(先不用太在意这些偏移是在什么地方产生的)。
在来一个例2吧,
s | — | — | — |
— | — | + | |
| | + | ||
| | + | — | e |
+ | — | — |
此时,t=7,sum=15,所以我们也容易得到 extra=8。
根据理科生的天性,由这两个一般性的例子,我们很容易嗅察到 extra 都为偶数。先带着疑惑,再来看我给的 0 、1 矩阵。
0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 |
设左上角坐标为(1,1),右下角坐标为(5,5).
那么我们给的例1,
起点 s 的坐标为(1,1),此点为“0”;
终点 e 为(5,5),此点为“0”。
所以t=8,为偶数。
现在我们再倒过来看,从终点(也就是 e )出发,把最短步数 t=8 耗费掉,不妨这样走,
s | + | |
+ | — | |
| | ||
+ | — | |
— | — | e |
如图所示从 e (5,5)耗费 8 步走到了(1,5)点。
因为是从 0 走偶数步,所以走到的坐标也一定是 0 ,就像这里的(1,5)点是 0 一样。
又因为最短步数已经耗费掉了,所以不管怎样,从(1,5)再走回到起点 s 所用的步数总是最开始从起点 s 走到终点 e 所花的某一个额外步数 extra 。
注意到,(1,5)点和起点 s (1,1)都是 0,也就是说,这个 extra 必然是偶数!
再看例2,同样从终点 e 开始耗费 t=7 步,
则所到的点一定是 0 (不管她在哪里),再从这个点回到起点 s ,所用的 extra 也必然是个偶数!
所以无论如何,sum= t + extra ( extra>=0 ) 中的 extra 都是一个偶数
那么我们就可以用公式 t-[abs(ex-sx)+abs(ey-sy)] 计算出extra是否为偶数来判断当前点能否恰好在这么多步到达终点了。
由此的代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define max_size 10
char ch[max_size][max_size];
int start_i, start_j, index_i, index_j, N, M, T, biaoji;
int d[4][2]={0,1,1,0,0,-1,-1,0};
void dfs(int x, int y, int num)
{
if(biaoji)
return;
if(!num)
{
if(x == index_i && y == index_j)
biaoji = 1;
return;
}
if(num < abs(index_i - x) + abs(index_j - y)) //精细步数剪枝
return ;
for(int i = 0; i < 4; i++)
{
int nx = x + d[i][0],ny = y + d[i][1];
if(!ch[nx][ny])
{//边界检查
ch[nx][ny] = 1;
dfs(nx, ny, num - 1);
ch[nx][ny] = 0; //待思考
}
}
return ;
}
int main()
{
char str[10];
while(scanf("%d%d%d", &N, &M, &T) && N || M || T)
{
int wall = 0;
memset(ch, 1, sizeof(ch));
for (int i = 1; i <= N; i++)
{
scanf("%s", str);
for (int j = 1;j <= M; j++)
{
ch[i][j] = str[j - 1];
if(ch[i][j] == 'S')
start_i = i,start_j = j,ch[i][j] = 1;
else if(ch[i][j] == 'D')
index_i = i, index_j = j, ch[i][j] = 0;
else if(ch[i][j] == 'X')
wall++,ch[i][j] = 1;
else
ch[i][j] = 0;
}
}
if(N * M - wall <= T || (abs(index_i - start_i) + abs(index_j - start_j) + T) % 2)
{ //粗略步数剪枝, 奇偶剪枝
printf("NO\n");
continue;
}
biaoji = 0;
dfs(start_i, start_j, T);
if(biaoji)
printf("YES\n");
else
printf("NO\n");
}
}