题目:
Customers
表:+-------------+---------+ | Column Name | Type | +-------------+---------+ | id | int | | name | varchar | +-------------+---------+ 在 SQL 中,id 是该表的主键。 该表的每一行都表示客户的 ID 和名称。
Orders
表:+-------------+------+ | Column Name | Type | +-------------+------+ | id | int | | customerId | int | +-------------+------+ 在 SQL 中,id 是该表的主键。 customerId 是 Customers 表中 ID 的外键( Pandas 中的连接键)。 该表的每一行都表示订单的 ID 和订购该订单的客户的 ID。找出所有从不点任何东西的顾客。
以 任意顺序 返回结果表。
结果格式如下所示。
来源:力扣(LeetCode)
链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
示例:
示例 1:
输入:
Customers table: +----+-------+ | id | name | +----+-------+ | 1 | Joe | | 2 | Henry | | 3 | Sam | | 4 | Max | +----+-------+ Orders table: +----+------------+ | id | customerId | +----+------------+ | 1 | 3 | | 2 | 1 | +----+------------+
输出:+-----------+ | Customers | +-----------+ | Henry | | Max | +-----------+
解法:
判断Customers表中的id在Orders表中的customersId列中是否出现,返回未出现的。
知识点:
1.提取DataFrame中的列并以DataFrame格式返回:使用df[['列名]]。
2.DataFrame.rename(self, mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None, errors='ignore'):mapper: 类似字典或函数,类似Dict或函数的转换,以应用于该轴的值,要么使用 mapper和 axis与指定axis的目标进行mapper转换,要么使用index和columns;index: 类似字典或函数,指定axis (mapper, axis=0相当于index=mapper)的替代方法;columns: 类似字典或函数,指定axis (mapper, axis=1 相当于columns=mapper)的替代方法;axis:{0 or 'index', 1 or 'columns'}, 默认为0(即' index '),int或str,轴到目标与mapper,可以是轴名(' index ', ' columns ')或数字(0,1);copy:bool, 默认True,还要复制底层数据;inplace:bool, 默认为 False,是否返回新的DataFrame,如果为真,则忽略copy的值;level:int或level name, 默认 None,对于多索引,只能在指定的级别重命名标签;errors:{‘ignore’, ‘raise’}, 默认 ‘ignore’,如果‘raise’,则报告错误,如果 ‘ignore’,现有的键将被重命名,额外的键将被忽略。比如重命名列:
data = [[1, 'Joe'], [2, 'Henry'], [3, 'Sam'], [4, 'Max']] customers = pd.DataFrame(data, columns=['id', 'name']).astype({'id': 'Int64', 'name': 'object'})print(customers.rename(columns={'name': 'Customers'}))
代码:
import pandas as pd def find_customers(customers: pd.DataFrame, orders: pd.DataFrame) -> pd.DataFrame: customers['buy'] = [customerId in list(orders['customerId']) for customerId in customers['id']] return customers[customers['buy'] == False][['name']].rename(columns={'name': 'Customers'})