力扣:197. 上升的温度(Python3)

题目:

表: Weather

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| recordDate    | date    |
| temperature   | int     |
+---------------+---------+
id 是该表具有唯一值的列。
该表包含特定日期的温度信息

编写解决方案,找出与之前(昨天的)日期相比温度更高的所有日期的 id 。

返回结果 无顺序要求 。

结果格式如下例子所示。

来源:力扣(LeetCode)
链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

示例:

示例 1:

输入:

Weather 表:
+----+------------+-------------+
| id | recordDate | Temperature |
+----+------------+-------------+
| 1  | 2015-01-01 | 10          |
| 2  | 2015-01-02 | 25          |
| 3  | 2015-01-03 | 20          |
| 4  | 2015-01-04 | 30          |
+----+------------+-------------+


输出:

+----+
| id |
+----+
| 2  |
| 4  |
+----+


解释:

2015-01-02 的温度比前一天高(10 -> 25)
2015-01-04 的温度比前一天高(20 -> 30)

解法:

先根据日期排序,接着比对后一天是不是和当前间隔1天且温度更高。

知识点:

1.pd.Timedelta(value, unit=None, **kwargs)表示两个datetime值之间的差。value:日期形式字符串;unit:指定value的类型。创建方式比如:

pd.Timedelta(days=1)

表示间隔1天。

代码:

import pandas as pd

def rising_temperature(weather: pd.DataFrame) -> pd.DataFrame:
    weather.sort_values('recordDate', inplace=True)
    w = list(zip(weather['id'], weather['recordDate'], weather['temperature']))
    return pd.DataFrame({'id': [w[index][0] for index in range(1, len(w)) if w[index][1] - w[index - 1][1] == pd.Timedelta(days=1) and w[index][2] > w[index - 1][2]]})

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值