- dp[i][j]——字符串[i,j]是否构成一个回文字符串
- dp[i] [i]都为true
自己拆开自己写的
class Solution {
List<List<String>> result=new ArrayList<>();
List<String> temp=new ArrayList<>();
boolean[][] dp ;
public List<List<String>> partition(String s) {
int len=s.length();
dp=new boolean[len][len];
dp=caldp(s);
dfs(s,0);
return result;
}
//回溯——每次dfs就是加入一个temp;迭代的dfs就是加入另一个temp
//start:以i为开始的数组,
void dfs(String s,int start){
int len=s.length();
//搜索一个temp时——开始搜索的起始位置已经到了n
if(start==len){
result.add(new ArrayList<String>(temp));
return;
}
//这个temp还没搜索完 需要继续搜索
for(int j=start;j<len;j++){
if(dp[start][j]){
temp.add(s.substring(start,j+1));
dfs(s,j+1);
temp.remove(temp.size()-1);
}
}
}
//动态规划:判断回文串,得到dp数组的值
//dp[i][j]——字符串[i,j]是否构成一个回文字符串,dp[i] [i]都为true
boolean[][] caldp(String s){
int len=s.length();
boolean[][] dp=new boolean[len][len];
for(int i=0;i<len;i++){
dp[i][i]=true;
}
for(int j=0;j<len;j++){
for(int i=0;i<j;i++){
if(s.charAt(i)==s.charAt(j)&&(j-i<=1||dp[i+1][j-1])){
dp[i][j]=true;
}
else{
dp[i][j]=false;
}
}
}
return dp;
}
}
题解
class Solution {
boolean[][] f;
List<List<String>> ret = new ArrayList<List<String>>();
List<String> ans = new ArrayList<String>();
int n;
public List<List<String>> partition(String s) {
n = s.length();
f = new boolean[n][n];
// 单字母的都为true
for (int i = 0; i < n; ++i) {
Arrays.fill(f[i], true);
}
// 其他字母组合
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = (s.charAt(i) == s.charAt(j)) && f[i + 1][j - 1];
}
}
dfs(s, 0);
return ret;
}
//回溯
public void dfs(String s, int i) {
if (i == n) {
//这边最终全部序列的结果
ret.add(new ArrayList<String>(ans));
return;
}
for (int j = i; j < n; ++j) {
if (f[i][j]) {
ans.add(s.substring(i, j + 1));
dfs(s, j + 1);
//回溯操作,撤销上边的操作,这边是只针对一种排列方式的remove比如b,a,a{b,a}是一种{b,aa}又是一种
ans.remove(ans.size() - 1);
}
}
}
}