工商银行 Serverless 函数计算落地实践

本文分享了工商银行在Serverless领域的实践经验,从工行云平台的发展历程到Serverless的业务驱动原因,详细介绍了工行Serverless 1.0和2.0平台的技术选型与应用场景,包括接口聚合、服务端渲染、批量任务和模型发布等,展示了Serverless如何助力银行业务创新和效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6月3日,百度云智峰会上,工商银行(以下简称"工行") 软开云计算实验室的高级经理周文泽发表了《工商银行 Serverless 函数计算落地实践》的主题演讲,分享了工行使用百度函数计算产品的落地过程。

 

演讲主要包括如下5个方面的内容:

  • 工行云平台概述

  • 为什么要做 Serverless?

  • 工行函数计算技术选型

  • 落地场景介绍

  • 未来规划

 

1. 工行云平台概述

 

工行云平台从2012年开始建设,基于业界领先云产品和主流开源技术,结合工行特色实现了金融级的自主定制研发和加固。

 

  • 2012年:基于服务器虚拟化软件,自主研发和推广第一代基础设施云

  • 2015年:率先于同业首家基于开源 Docker 容器技术、微服务,建设应用平台云,并在生产运用

  • 2016年:完成互联网金融高并发场景的试点并顺利支撑快捷支付“双11”大促、鸡年贺岁币云上发行

  • 2017年:基于 OpenStack、Ceph 等业界开源技术,建设新一代基础设施云;同时基于 Kubernetes,建设企业级应用平台云 PaaS 2.0

  • 2018年:金融生态云 SaaS 上线,启动 Serverless1.0 自研工作

  • 2020年:建设新一代云平台建设,包括分行云,与此同时也是启动了 Serverless2.0 相关的规划研究和建设工作。

 

工行云平台包含如下四个方面的技术特色:

 

  • 引入业界领先的云产品,结合生产运营运维需求进行客户化定制,构建新一代基础设施云

  • 通过引入开源容器技术 Docker、容器集群调度技术 Kubernetes 等,自主研发建设应用平台云

  • 基于HAProxy、Dubbo、ElasticSearch等建立负载均衡、微服务、全息监控、日志中心等配套云生态

  • 基于 Kubernetes Operator 机制提供有状态应用容器化部署及自动化运维能力,实现基础技术平台弹性扩缩,落地 ElasticSearch、Zookeeper 等复杂应用容器化部署场景

 

2. 为什么要做 Serverless?

 

"不是说 Serverless 发展好就去做,而是考虑了具体业务场景"周文泽表示。

 

一方面工行已建立了较为完备的云计算、分布式架构体系及容器云平台,分布式服务体系建设成效也比较显著,包括积累了大量可复用的业务服务资产,同时业务量上涨较快,核心业务平均交易量超5亿笔每天,大量的业务往线上走,对业务改造压力非常大,大量的业务需要快速做线上化的处理,针对手机银行或者其他的PC端都会面临这样的情况;另一方面,商业银行竞争加剧及互联网企业的跨界渗透,要求银行信息系统必须满足快速创新需要。

 

在这个背景下ÿ

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值