2011/9/14
传统和社交推荐系统中解释类型的一种概括的分类
--A generalized taxonomy of explanations styles for traditional and social recommender systems
之前在杭做毕设的时候,二师兄曾经在推荐系统上花过一些功夫。虽然没有了下文,我个人对推荐系统还是有很大的兴趣。在Dm&KD上下的这paper,花了三个小时粗读了全文,一些tips记录如下:
l 以前的研究中对于选择什么样的算法,都会选择不同的解释类型。似乎推荐算法和解释类型是one-to-one mapping的。这里作者总结了不同的解释类型。
l 将解释类型分为Human、Item、Feature以及Hybrid这四种类型,介绍了各种解释类型在推荐系统中的具体实现。比如amazon中的Human type“为你推荐x,因为A,B,C买过这个x”,还有Item type的“为你推荐x,因为你买过y,z”,至于Feature Type,我见到的还是比较少的,将特征抽取出来表示一个item or activity,然后根据你的features与x的features相关,给出推荐的例子。至于Hybrid Type,从1-D到2-D再到3-D的一个例子:
n 1-D:为你推荐x,因为A,B买过这个东西;
n 2-D:为你推荐x,因为你买过y,z,同时A、B买过这个东西;
n 3-D:为你推荐x,因为你买过y、z,你的好友A、B买过这个东西,然后x具有的feature1、feature2是你最近关注的。
l 文中还指出,对于同一个推荐系统的一个推荐,如果表现形式不同,那么取得的效果很不相同的。同样的结果,用数字百分比表现出来就没有直方图那么让人有感觉。而很多推荐系统不仅仅是要给出recommendation,它要让users在得到这个recommendation后make decisions,所以形式也是很重要的。
l 还有一个令我反思的地方在于,此文提出的一个general taxonomy,对于很多技术和方法,大家都忙于改进和创新,却还有那么一个层面是站的高一些、站的远一些,将这些纷杂的东西generalize。这个思想如同辩证法课上讲的古希腊的ontology的思想。
l 文中还讲到对于geo-social以及activity recommendation研究很少滴,确实是这个样子的。
l 在这个信息过载的时代,推荐将无所不在。应用场景—数据—应用对象—解释类型,还有最重要的推荐算法,rs也应当是dm的一个比较成功的应用了。but now for me,I need more to make my decision。
对于learning来说,数学真的very important,所以从头开始做起。决策真的同样举足轻重,在作出这个决策的时候,我觉得从长远来说是值得的就去做。每一次尝试和努力都是再为未来积累经验。so for me,我目前的三个重点在于:
数学,这是选择了dm就必须去弄好的,要不然就谈不上research了;
前沿,从paper中提取,了解了前沿才能作出正确的决策,选择适合自己的方向;
基础,也就是MrZhou讲的热身阶段,目前还是缺乏这方面的素养的。