尺度不变特征转换(Scale-invariant feature transform或SIFT)是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善。Sift特征匹配算法可以处理两幅图像之间发生平移、旋转、仿射变换情况下的匹配问题,具有很强的匹配能力。
1、SIFT算子特性
Sift算子具有以下特性:
(1)、Sift特征是图像的局部特征,对平移、旋转、尺度缩放、亮度变化、遮挡和噪声等具有良好的不变性,对视觉变化、仿射变换也保持一定程度的稳性。
(2)、独特性好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。
(3)、多量性,即使少数的几个物体也可以产生大量Sift特征向量。
(4)、速度相对较快,经优化的Sift匹配算法甚至可以达到实时的要求。
(5)、可扩展性强,可以很方便的与其他形式的特征向量进行联合。
2、SIFT特征匹配
Sift特征匹配算法主要包括两个阶段,
第一阶段是Sift特征的生成。即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量,如角点、边缘点、暗区的亮点及亮区的暗点等。
第二阶段是Sift特征向量的匹配。
2.1、Sift特征的生成一般包括以下几个步骤:
(1)、构建尺度空间,检测极值点,获得尺度不变性。
搜索所有尺度上的图像位置,通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
(2)、特征点过滤并进行精确定位。
在每个候选的