系统性质与z变换零极点分布讨论

系统性质与z变换零极点分布讨论

Author: Sijin Yu



幅频特性

H ( z ) H(z) H(z) 极点对应的角频率有 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(e) 极大值

H ( z ) H(z) H(z) 零点对应的角频率有 ∣ H ( e j ω ) ∣ |H(e^{j\omega})| H(e) 极小值


因果稳定性 (极点)

因果 (右边序列): 收敛域在 H ( z ) H(z) H(z) 最外的极点之外

反因果 (左边序列): 收敛域在 H ( z ) H(z) H(z) 最内的极点之内

稳定: 收敛域包含单位圆

因果稳定 (物理可实现): H ( z ) H(z) H(z) 所有极点都在单位圆内


逆系统

H ( z ) H(z) H(z) 的极点是 H − 1 ( z ) H^{-1}(z) H1(z) 的零点

H ( z ) H(z) H(z) 的零点是 H − 1 ( z ) H^{-1}(z) H1(z) 的极点


最小相位与最大相位 (零点)

最小相位: H ( z ) H(z) H(z) 所有零点都在单位圆内

最大相位: H ( z ) H(z) H(z) 所有零点都在单位圆外

要使 H ( z ) H(z) H(z) 的逆系统物理可实现, H ( z ) H(z) H(z) 必须为最小相位系统


全通系统

H ( z ) H(z) H(z) 的每个极点都必有一个互为共轭对称的零点

z = r e j ϕ z=re^{j\phi} z=rejϕ 为极点, 则必有一个零点: z = 1 r e − j ϕ z=\frac1re^{-j\phi} z=r1ejϕ


线性相位的FIR系统 (零点)

所有零点关于实轴对称, 关于单位圆对称 (零点总是以4个为一组存在的, 实轴或单位圆上的零点成对存在)

关于 z = 1 z=1 z=1 z = − 1 z=-1 z=1 处的零点:

I型序列 z = 1 z=1 z=1 有偶数个零点, z = − 1 z=-1 z=1 有偶数个零点

II型序列 z = 1 z=1 z=1 有偶数个零点, z = − 1 z=-1 z=1 有奇数个零点

III型序列 z = 1 z=1 z=1 有奇数个零点, z = − 1 z=-1 z=1 有奇数个零点

IV型序列 z = 1 z=1 z=1 有奇数个零点, z = − 1 z=-1 z=1 有偶数个零点

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sijin_Yu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值