频率响应、零极点、稳定性专题

本文从回顾拉普拉斯变换开始,总结了电路频率响应,零极点,反馈系统的稳定性等相关知识。
摘要由CSDN通过智能技术生成

一、Laplace变换


如图所示一个低通滤波器,列基尔霍夫方程,得到线性微分方程:
\[
C{\frac {dV_C}{dt}}+{\frac {V_R}{R}}=0
\]

正是因为电感电容的存在,使得电路方程出现微分、积分项。而Laplace变换将微分方程转化为线性代数方程,成为快速求解微分方程的有力工具。

但是列出电路的微分方程之后再进行Laplace变换,求解之后再进行反变换仍然很复杂,聪明的电子工程师们便想到直接将电路中的电阻器 ®、 电容器 © 和电感元件 (L)变换到s域。

R L C
R sL 1 s C {1 \over sC} sC1

于是这个电路可以看作一个分压器

V C ( s ) V i n ( s ) = 1 / C s R + 1 / C s = 1 1 + R C s \frac{V_{C}(s)}{V_{ {in}}(s)}={\frac {1/Cs}{R+1/Cs}}={\frac {1}{1+RCs}} Vin(s)VC(s)=R+1/Cs1/Cs=1+RCs1

下面便引出系统的传输函数。

二、传递函数


对于最简单的连续时间输入信号 x ( t ) x(t) x(t) , 和输出信号 y ( t ) y(t) y(t) 来说传递函数 H ( s ) H(s) H(s) 所反映的就是零状态条件下输入信号的拉普拉斯变换 X ( s ) = L { x ( t ) } X(s)={\mathcal {L}}\left\{x(t)\right\} X(s)=L{ x(t)} 与输出信号的拉普拉斯变换 Y ( s ) = L { y ( t ) } Y(s)={\mathcal {L}}\left\{y(t)\right\} Y(s)=L{ y(t)} 之间的线性映射关系:

Y ( s ) = H ( s ) X ( s ) Y(s) = H(s) X(s) Y(s)=H(s)X(s)
或者
H ( s ) = Y ( s ) X ( s ) = L { y ( t ) } L { x ( t ) } H(s)=\frac{Y(s)}{X(s)} = \frac{ \mathcal{L} \left\{ y(t) \right\} }{\mathcal{L} \left\{ x(t) \right\} } H(s)=X(s)Y(s)=L{ x(t)}L{ y(t)}

而当系统为封闭回路的负反馈系统时:

由上图可得:

Y ( s ) = Z ( s ) G ( s ) ⇒ Z ( s ) = Y ( s ) G ( s ) Y(s)=Z(s)G(s)\Rightarrow Z(s)={\dfrac {Y(s)}{G(s)}} Y(s)=Z(s)G(s)Z(s)=G(s)Y(s)
X ( s ) − Y ( s ) H ( s ) = Z ( s ) = Y ( s ) G ( s ) ⇒ X ( s ) = Y ( s ) [ 1 + G ( s ) H ( s ) ] / G ( s ) X(s)-Y(s)H(s)=Z(s)={\dfrac {Y(s)}{G(s)}}\Rightarrow X(s)=Y(s)\left[{1+G(s)H(s)}\right]/G(s) X(s)Y(s)H(s)=Z(s)=G(s)Y(s)X(s)=Y(s)[1+G(s)H(s)]/G(s)
⇒ Y ( s ) X ( s ) = G ( s ) 1 + G ( s ) H ( s ) \Rightarrow {\dfrac {Y(s)}{X(s)}}={\dfrac {G(s)}{1+G(s)H(s)}} X(s)Y(s)=1+G(s)H(s)G(s)

三、零极点


传递函数可以写成如下更加普遍的形式:
X ( s ) = N ( s ) D ( s ) = M ∏ i = l R ( s − β i ) ∏ j = l R ( s − α j ) X(s) = \frac{N(s)}{D(s)} = M \frac{\prod_{i=l}^{R}(s-\beta_{i})}{\prod_{j=l}^{R}(s-\alpha_{j})} X(s)=D(s)N(s)=Mj=lR(sαj)i=lR(sβi)
所有让分母 D ( s ) D(s) D(s) 为0等点 s z s_z sz 为系统的极点;
所有让分子 N ( s ) N(s) N(s) 为0等点 s p s_p sp 为系统的零点;

考虑一个由一个零点和两个极点组成的系统,在极坐标上表示为下图:

从上图中可以看出傅立叶变换和拉普拉斯变换的关系:
傅立叶变换为拉普拉斯变换在s平面虚轴 j ω j\omega 上的求值。

由此,引出波特图。

四、波特图


从上图中可以看到,系统的传递函数 H ( J ω ) H(J\omega) H(Jω) 其实就是将复平面中极点零点到虚轴上某一点的向量相乘除:

H ( j ω ) = N → M 1 → M 2 → = j ω − z 1 ( j ω − p 1 ) ( j ω − p 2 ) H(j\omega) = \frac{\stackrel{\rightarrow}{N}}{\stackrel{\rightarrow}{M_1} \stackrel{\rightarrow}{M_2}} = \frac{j\omega - z_1}{(j\omega - p_1)(j\omega - p_2)} H()=M1M2N=(p1)(

  • 87
    点赞
  • 407
    收藏
    觉得还不错? 一键收藏
  • 19
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值