基于朴素贝叶斯的垃圾邮件分类Python实现

一、朴素贝叶斯

朴素贝叶斯法(Naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 x ,利用贝叶斯定理求出后验概率最大的输出 y 。

1、朴素贝叶斯

输入空间:

输出空间:y={C1,C2,…,CK}。

训练集:T={(x1,y1),(x2,y2),…,(xN,yN)}。

对于每个实例,其P(X,Y)独立同分布。在进行分类之前,需要先将计算先验概率和条件概率然后据此计算出后验概率。

1)先验概率分布:

P(Y=Ck),k=1,2,..,K。

先验概率的极大似然估计:

2)条件概率分布:

设第j个特征可能取值的集合为:{aj1,aj2,..,asj}

则极大似然估计:

说明:每个实例有n个特征,分别为x1,x2,..,xn,每个特征分别有s1,s2,…,sn种取值,即特征xi有si种取值。则计算该条件概率分布的时间复杂度为:O(s1*s2*…*sn *K)。时间复杂度非常的高。

3)对新的实例进行分类:

为了计算将新的实例进行分类,我们需要计算该实例属于每类的后验概率,最终将此实例分给后验概率最大的类。

后验概率为:

在此需要用到条件独立的假设,即在分类确定的情况下,x的各特征相互独立。因为用到了此假设故而在贝叶斯前面加了朴素二字。于是有:

所以有:

由于对同一个实例,P(X=x)的概率相通同,故而只需考虑分子部分即可。

 

 

二、朴素贝叶斯算法分析

优点
    (1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    (2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
    (3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。
缺点
    (1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
    (2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
    (3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
    (4)对输入数据的表达形式很敏感。

三、贝叶斯过滤器的使用过程

现在我们收到一封新邮件,我们假定它是 正常邮件 和 垃圾邮件的概率各是50%,即:

P(正常)= P(垃圾)=50%

然后,对这封新邮件的内容进行解析,发现其中含有“发票”这个词,那么这封邮件属于垃圾邮件的概率提高到多少?其实就是计算一个条件概率,在有“发票”词语的条件下,邮件是垃圾邮件的概率:P(垃圾|发票)。直接计算肯定是无法计算了,这时要用到贝叶斯定理:

垃圾发票发票垃圾垃圾发票P(垃圾|发票)=P(发票|垃圾)⋅P(垃圾)P(发票)

根据全概率公式:

P(发票)=P(发票|垃圾)⋅P(垃圾)+P(发票|正常)⋅P(正常)

所以: 垃圾发票发票垃圾垃圾发票垃圾垃圾发票正常正常P(垃圾|发票)=P(发票|垃圾)⋅P(垃圾)P(发票|垃圾)⋅P(垃圾)+P(发票|正常)⋅P(正常)

其中,P(发票|垃圾) 表示所有垃圾邮件中出现“发票”的概率,我们假设100封垃圾邮件中有5封包含“发票”这个词,那么这个概率是5%。P(发票|正常) 表示所有正常邮件中出现“发票”的概率,我们假设1000封正常邮件中有1封包含“发票”这个词,那么这个概率是0.1%。于是:

P(垃圾|发票)=(5%×50%) / (5%×50% + 0.1%×50%)=98%

因此,这封新邮件是垃圾邮件的概率是98%。从贝叶斯思维的角度,这个“发票”推断能力很强,直接将垃圾邮件50%的概率提升到98%了。那么,我们是否就此能给出结论:这是封垃圾邮件?

四、代码实现:

import os
import re
import string
import math

DATA_DIR = 'enron'
target_names = ['ham', 'spam']


def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1, 7)]
    data = []
    target = []
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(0)
    return data, target


X, y = get_data(DATA_DIR)


class SpamDetector_1(object):
    def clean(self, s):
        translator = str.maketrans("", "", string.punctuation)
        return s.translate(translator)

    def tokenize(self, text):
        text = self.clean(text).lower()
        return re.split("\W+", text)

    def get_word_counts(self, words):
        word_counts = {}
        for word in words:
            word_counts[word] = word_counts.get(word, 0.0) + 1.0
        return word_counts


class SpamDetector_2(SpamDetector_1):
    def fit(self, X, Y):
        self.num_messages = {}
        self.log_class_priors = {}
        self.word_counts = {}
        self.vocab = set()
        self.num_messages['spam'] = sum(1 for label in Y if label == 1)
        self.num_messages['ham'] = sum(1 for label in Y if label == 0)
        self.log_class_priors['spam'] = math.log(
            self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
        self.log_class_priors['ham'] = math.log(
            self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))

        self.word_counts['spam'] = {}
        self.word_counts['ham'] = {}

        for x, y in zip(X, Y):
            c = 'spam' if y == 1 else 'ham'
            counts = self.get_word_counts(self.tokenize(x))
            for word, count in counts.items():
                if word not in self.vocab:
                    self.vocab.add(word) 
                if word not in self.word_counts[c]:
                    self.word_counts[c][word] = 0.0
                self.word_counts[c][word] += count


MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])


class SpamDetector(SpamDetector_2):
    def predict(self, X):
        result = []
        flag_1 = 0
        for x in X:
            counts = self.get_word_counts(self.tokenize(x))
            spam_score = 0
            ham_score = 0
            flag_2 = 0
            for word, _ in counts.items():
                if word not in self.vocab:
                    continue
                else:
                    if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                        sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
                            self.vocab)))
                    if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))

                spam_score += log_w_given_spam
                ham_score += log_w_given_ham

                flag_2 += 1

                spam_score += self.log_class_priors['spam']
                ham_score += self.log_class_priors['ham']
                
            if spam_score > ham_score:
                result.append(1)
            else:
                result.append(0)

            flag_1 += 1

        return result


MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]

accuracy = 0
for i in range(100):
    if pred[i] == true[i]:
        accuracy += 1
print(accuracy)

运行结果图

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值