一、思维导图:
二、基本概念:
- k k k 近邻法:是一种基本分类和回归方法。给定一个训练数据集,其中的类别已经确定,对于输入的实例,在训练数据集中找到与该实例最邻近的 k k k 个实例,这 k k k 个实例中多数属于的类别就作为输入实例的类别输出。
- 最近邻:是 k k k 近邻方法的一种特殊情况,即当 k = 1 k=1 k=1时的情形。
- 显式学习过程:即在学习过程中需要进行加工, k k k 近邻方法不属于显式学习过程。
- 单元:对于每个训练实例点 x x x,距离该点比其他点更近的所有点组成的一个区域称为单元。
- 特征空间的一个划分:每个训练实例点都拥有一个单元,所有训练实例点的单元构成对特征空间的一个划分。
三、k近邻算法:
- 算法定义:
输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\begin{Bmatrix} (x_{1},y_{1}),(x_{2},y_{2}),...,(x_{N},y_{N}) \end{Bmatrix} T={(x1,y1),(x2,y2),...,(xN,yN)}, 其中, x i ∈ χ ⊆ R n x_{i}\in \chi \subseteq R^{n} xi∈χ⊆Rn 为实例的特征向量, y i ∈ γ = { c 1 , c 2 , . . . , c K } y_{i}\in \gamma =\begin{Bmatrix} c_{1},c_{2},...,c_{K} \end{Bmatrix} yi∈γ={c1,c2,...,cK} 为实例的类别, i = 1 , 2 , . . . , N i=1,2,...,N i=1,2,...,N;
实例特征向量 x x x。
输出:实例 x x x所属的类别 y y y。
(1)根据给定的距离度量,在训练集 T T T中找出与 x x x最近邻的 k k k个点,称涵盖这 k k k个点的 x x x的邻域记作 N k ( x ) N_{k}(x) Nk(x);
(2)在这 N k ( x ) N_{k}(x) Nk(x)中根据分类决策规则(如多数表决)决定 x x x 的类别 y y y,规则如下:
y = a r g m a x c j ∑ x i ∈ N k ( x ) I ( y i = c j ) , i = 1 , 2 , . . . , N ; j = 1 , 2 , . . . , K . y=arg \: max_{c_{j}}\sum_{x_{i}\in N_{k}(x)} I(y_{i}=c_{j}),\: i=1,2,...,N;j=1,2,...,K. y=argmaxcjxi∈Nk(x)∑I(yi=cj),i=1,2,...,N;j=1,2,...,K.
其中, I I I是指示函数,即当 y i = c j y_{i}=c_{j} yi=cj时, I I I=1,否则 I I I=0。
四、k近邻模型:
- 模型:
k k k 近邻模型实际上是对特征空间的划分。模型主要有三个基本要素——距离度量、 k k k 值的选择、分类决策规则。当这些元素确定之后,实例 x x x的类别就唯一地确定了。这相当于根据要素将特征空间划分为一些子空间,确定子空间里每个点属于的类。 - 距离度量:
前提:特征空间中两个实例点之间的距离就是两个实例点相似程度的反映。使用的距离为欧氏距离或者更为一般的 L p L_{p} Lp距离。
① L p L_{p} Lp距离: L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_{p}(x_{i},x_{j})=(\sum_{l=1}^{n}\left | x_{i}^{(l)}-x_{j}^{(l)} \right |^p)^\frac{1}{p} Lp(xi,xj)=(l=1∑n∣∣∣xi(l)−xj(l)∣∣∣p)p1 其中,特征空间 χ \chi χ 是 n n n 维实数向量空间 R n R_{n} Rn, x i , x j ∈ χ , x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) , x j = ( x j ( 1 ) , x j ( 2 ) , . . . , x j ( n ) ) x_{i},x_{j}\in \chi,x_{i}=(x_{i}^{(1)},x_{i}^{(2)},...,x_{i}^{(n)}),x_{j}=(x_{j}^{(1)},x_{j}^{(2)},...,x_{j}^{(n)}) xi,xj∈χ,xi=(xi(1),xi(2),...,xi(n)),xj=(xj(1),xj(2),...,xj(n))
②欧氏距离(当 p = 2 p=2 p=2时):
L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_{2}(x_{i},x_{j})=(\sum_{l=1}^{n}\left | x_{i}^{(l)}-x_{j}^{(l)} \right |^2)^\frac{1}{2} L2(xi,xj)=(l=1∑n∣∣∣xi(l)−xj(l)∣∣∣2)21
③曼哈顿距离(当 p = 1 p=1 p=1时):
L 1 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ ) L_{1}(x_{i},x_{j})=(\sum_{l=1}^{n}\left | x_{i}^{(l)}-x_{j}^{(l)} \right |) L1(xi,xj)=(l=1∑n∣∣∣xi(l)−xj(l)∣∣∣)
④各个坐标距离的最大值(当 p = ∞ p=\infty p=∞时):
L ∞ ( x i , x j ) = m a x l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty}(x_{i},x_{j})=max_{l}\left | x_{i}^{(l)}-x_{j}^{(l)} \right | L∞(xi,xj)=maxl∣∣∣xi(l)−xj(l)∣∣∣ -
k
k
k 值的选择:
k k k值的选择会对 k k k近邻法的结果产生重大影响,在应用中,一般会选取比较小的值,通常采用交叉验证法来选取最优的 k k k值。
① k k k值选取过小,会降低模型的近似误差,但是缺点是估计误差会增大,距离实例点较近的点对预测结果有较大影响,会导致模型过于复杂,还可能产生过拟合问题;
② k k k值选取过大,使得模型过于简单,与 k k k值选取过小相反,离实例点较远的点会对预测结果产生错误影响。 - 分类决策规则:
分类决策规则往往是多数表决。
五、k近邻法的实现:kd树:
-
构造 k d kd kd树:
算法3.2(构造平衡 k d kd kd树):
输入: k k k 维空间数据集 T = { x 1 , x 2 , . . . , x N } , T=\begin{Bmatrix} x_{1},x_{2},...,x_{N} \end{Bmatrix}, T={x1,x2,...,xN}, 其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( k ) ) T , i = 1 , 2 , . . . , N ; x_{i}=(x_{i}^{(1)},x_{i}^{(2)},...,x_{i}^{(k)})^{T},i=1,2,...,N; xi=(xi(1),xi(2),...,xi(k))T,i=1,2,...,N;
输出: k d kd kd 树
(1) 开始:构造根结点,根结点对应包含 T T T 的 k k k 维空间的超矩形区域。
选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以 T T T 中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将根结点对应的超矩形区域分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。
由根结点生成深度为1的左右子节点;左子结点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域,右结点对应于坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。
将落在切分超平面上的实例点保存在根结点。
(2) 重复:对深度为 j j j的结点,选择 x ( l ) x^{(l)} x(l)为切分的坐标轴,其中 l = j ( m o d k ) + 1 l=j(mod \: k)+1 l=j(modk)+1,以该结点的区域中所有实例的 x ( l ) x^{(l)} x(l) 坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( l ) x^{(l)} x(l)垂直的超平面实现。
由该结点生成深度为 j + 1 j+1 j+1的左、右子结点;
将落在切分超平面上的实例点保存在该结点。
(3) 直到两个子区域没有实例存在时停止。从而形成 k d kd kd树的区域划分。 -
搜索 k d kd kd树:
算法3.3(用 k d kd kd树的最近邻搜索):
输入:已构造的 k d kd kd树,目标点 x x x;
输出: x x x的最近邻。
(1)在 k d kd kd 树中找出包含目标点 x x x 的叶节点:从根节点出发,递归地向下访问 k d kd kd 树。若目标点 x x x当前维的坐标小于切分点的坐标,则移动到左子节点,否则移动到右子节点。直到子节点为叶节点为止。
(2)以此叶节点为“当前最近点”。
(3)递归地向上回退,在每个节点进行以下操作:
(a) 如果该节点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”。
(b)当前最近点一定存在于该节点一个子节点对应的区域。检查该子节点的父节点的另一子节点对应的区域是否有更近的点。具体地,检查另一子节点对应的区域是否与以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。
如果相交,可能在另一个子节点对应的区域内存在距目标点更近的点,移动到另一子节点。接着,递归地进行最近邻搜索;
如果不想交,向上回退。
(4)当回退到根节点时,搜索结束。最后的“当前最近点”即为 x x x 的最近邻点。