K近邻法

简介

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。

模型

模型由三个基本要素:距离度量、k值的选择、分类决策规则决定。

  1. 距离度量:
    k近邻模型的特征空间是n维实数向量空间 R N R^N RN,使用的距离是欧式距离,但也可以是更一般的 L p L_p Lp距离或Minkowski距离。
    x i , x j ∈ R N x_i, x_j\in{R^N} xi,xjRN, x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T , x j = ( x j ( 1 ) , x j ( 2 ) , . . . , x j ( n ) ) T x_i=(x_i^{(1)}, x_i^{(2)}, ...,x_i^{(n)})^T, x_j=(x_j^{(1)},x_j^{(2)},...,x_j^{(n)})^T xi=(xi(1),xi(2),...,xi(n))T,xj=(xj(1),xj(2),...,xj(n))T
    x i x_i xi x j x_j xj L p L_p Lp距离定义为: L p ( x i , x j ) = ( ∑ ∣ x i l − x j l ∣ p ) 1 p L_p(x_i, x_j)=(\sum{|x_i^{l}-x_j^{l}|^p})^{\frac{1}{p}} Lp(xi,xj)=(xilxjlp)p1 ( p > = 1 ) (p>=1) (p>=1)
    p = 2 p=2 p=2时,称为欧式距离,当 p = 1 p=1 p=1时,称为曼哈顿距离,当 p = ∞ p=\infty p=时,它是各个坐标距离的最大值。
  2. k值的选择:
    如果选择较小的k值,“学习”的近似误差会减小,但是估计误差会增大,预测结果会对近邻的实例点非常敏感。k值的减小意味着整体模型变复杂,容易发生过拟合。
  3. 分类决策规则:
    多数表决规则。

算法

k近邻法最简单的实现方法是线性扫描,但是耗时,为了提高效率,采用kd树。
kd树是二叉树,表示对k维空间的一个划分。
具体算法(构造kd树):
输入:k维空间数据集 T = { x 1 , x 2 , . . . x N } T=\{x_1,x_2,...x_N\} T={x1,x2,...xN},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( k ) ) T x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(k)})^T xi=(xi(1),xi(2),...,xi(k))T
输出:kd树
step1. 开始:构造根节点,根节点对应于包含T的k维空间的超矩形区域。选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以T中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将根节点对应的超矩形区域且分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。
由根节点生成深度为1的左、右子节点:左子节点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域,右子节点对应于坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。
将落在切分超平面上的实例点保存在根节点。
step2. 重复:对深度为j的节点,选择 x ( l ) x^{(l)} x(l)为切分的坐标轴, l = j l=j l=j mod k+1,以该节点的区域中所有实例的 x ( l ) x^{(l)} x(l)坐标的中位数为切分点,将该节点对应的超矩形区域且分为2个子区域,切分由通过切分点并与坐标轴 x ( l ) x^{(l)} x(l)垂直的超平面实现。
由该节点生成深度为 j + 1 j+1 j+1的左、右子节点:左子节点杜英坐标 x ( l ) x^{(l)} x(l)小于切分点的子区域,右子节点对应坐标 x ( l ) x^{(l)} x(l)大于切分点的子区域。
将落在切分超平面上的实例点保存在该节点。
step3. 直到两个子区域没有实例存在时停止,从而形成kd树的区域划分。

具体算法(搜索kd树):
输入:已构造的kd树,目标点x
输出:x的最近邻
step1. 在kd树中找出包含目标点x的叶节点:从根节点出发,递归地向下访问kd树。若目标点x当前维的坐标小于切分点的坐标,则移动到左子节点,否则移动到右子节点。直到子节点为叶节点为止。
step2. 以此叶节点为“当前最近点”。
step3. 递归地向上回退,在每个节点进行以下操作:
a) 如果该节点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”。
b) 当前最近点一定存在于该节点一个子节点对应的区域。检查该子节点的父节点的另一子节点对应的区域是否有更近的点。具体地,检查里另一子节点对应的区域是否以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。
如果相交,可能在另一个子节点对应的区域内存在距目标点更近的点,移动到另一个子节点。接着,递归地进行最近邻搜索;
如果不相交,向上回退。
step4. 当回退到根节点时,搜索结束。最后的“当前最近点”即为x的最近邻点。

实例

二维空间数据集: T = { ( 2 , 3 ) T , ( 5 , 4 ) T , ( 9 , 6 ) T , ( 4 , 7 ) T , ( 8 , 1 ) T , ( 7 , 2 ) T } T=\{(2,3)^T, (5,4)^T, (9,6)^T, (4,7)^T, (8,1)^T, (7,2)^T\} T={(2,3)T,(5,4)T,(9,6)T,(4,7)T,(8,1)T,(7,2)T}
首先,构造一个平衡kd树:

  1. x ( 1 ) x^{(1)} x(1)维度中,有2,5,9,4,8,7这些数,中位数为7,取 x ( 1 ) x^{(1)} x(1)=7做垂直分割线,分为左右2个子区域。
    左子区域: ( 2 , 3 ) T , ( 5 , 4 ) T , ( 4 , 7 ) T (2,3)^T, (5,4)^T, (4,7)^T (2,3)T,(5,4)T,(4,7)T
    右子区域: ( 9 , 6 ) T , ( 8 , 1 ) T (9,6)^T, (8,1)^T (9,6)T,(8,1)T
  2. x ( 2 ) x^{(2)} x(2)维度中,对左子区域取中位数,为4,取 x ( 2 ) x^{(2)} x(2)=4做垂直分割线,分为上下2个子区域。
    上子区域: ( 4 , 7 ) T (4,7)^T (4,7)T
    下子区域: ( 2 , 3 ) T (2,3)^T (2,3)T
    x ( 2 ) x^{(2)} x(2)维度中,对右子区域取中位数,为6,取 x ( 2 ) x^{(2)} x(2)=6做垂直分割线,分为上下2个子区域。
    下子区域: ( 8 , 1 ) T (8,1)^T (8,1)T
  3. 以此类推,直到每个点都在分割线上。在这里插入图片描述

在这里插入图片描述

参考文献

《统计学习方法》 李航

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值