1087: [SCOI2005]互不侵犯King
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1885 Solved: 1115
[ Submit][ Status][ Discuss]
Description
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
Input
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
Output
方案数。
Sample Input
3 2
Sample Output
16
HINT
Source
解析:最裸的状压dp。(什么是状压dp请自行百度,这里就不再讲了)
n最大为9,也就是说每层最多有2^10-1种状态,而在这些状态中,有效的就更少了。所以,我们可以记录下每层的有效状态,以减少枚举量。
代码:
#include<cstdio>
#define maxn 1100
using namespace std;
int n,m;
int q[maxn],s[maxn];
bool flag[maxn][maxn],used[maxn];
long long f[15][maxn][100];
bool ok(int x,int i)
{
int p;
if(i>0)x>>=(i-1),p=7;
else p=3;
if(x&p)return 0;
return 1;
}
void init()
{
int i,j,k,p,x,y,z;
scanf("%d%d",&n,&m);
q[0]=p=1,q[1]=0,used[0]=1;
for(i=1;i<=n;i++)
while(p<=q[0] && s[q[p]]<i)
{
for(x=q[p],j=0;j<n;j++)if(ok(x,j))
{
y=(x|(1<<j));
if(!used[y])q[++q[0]]=y,s[y]=i,used[y]=1;
}
p++;
}
for(i=1;i<=q[0];i++)
for(j=1;j<=q[0];j++)
if((q[i]&q[j])==0 && (q[i]&(q[j]>>1))==0 && (q[i]&(q[j]<<1))==0)
flag[i][j]=1;
}
void work()
{
int i,j,k,p,x,y,z;
for(i=1;i<=q[0];i++)f[1][i][s[q[i]]]=1;
for(i=2;i<=n;i++)
for(j=1;j<=q[0];j++)
for(k=1;k<=q[0];k++)if(flag[j][k])
for(p=s[q[k]];p<=m;p++)
f[i][k][p]+=f[i-1][j][p-s[q[k]]];
long long ans=0;
for(i=1;i<=q[0];i++)ans+=f[n][i][m];
printf("%I64d\n",ans);
}
int main()
{
freopen("1.in","r",stdin);
init();
work();
return 0;
}