scoi2005 互不侵犯 (状压dp)

1087: [SCOI2005]互不侵犯King

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 1885   Solved: 1115
[ Submit][ Status][ Discuss]

Description

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

方案数。

Sample Input

3 2

Sample Output

16

HINT

Source

[ Submit][ Status][ Discuss]


解析:最裸的状压dp。(什么是状压dp请自行百度,这里就不再讲了)

           n最大为9,也就是说每层最多有2^10-1种状态,而在这些状态中,有效的就更少了。所以,我们可以记录下每层的有效状态,以减少枚举量。

代码:

#include<cstdio>
#define maxn 1100
using namespace std;

int n,m;
int q[maxn],s[maxn];
bool flag[maxn][maxn],used[maxn];
long long f[15][maxn][100];

bool ok(int x,int i)
{
  int p;
  if(i>0)x>>=(i-1),p=7;
  else p=3;
  if(x&p)return 0;
  return 1;
}

void init()
{
  int i,j,k,p,x,y,z;
  scanf("%d%d",&n,&m);
  
  q[0]=p=1,q[1]=0,used[0]=1;
  for(i=1;i<=n;i++)
    while(p<=q[0] && s[q[p]]<i)
      {
        for(x=q[p],j=0;j<n;j++)if(ok(x,j))
		  {
		    y=(x|(1<<j));
		    if(!used[y])q[++q[0]]=y,s[y]=i,used[y]=1;
		  }
		p++;    
      }
   for(i=1;i<=q[0];i++)
     for(j=1;j<=q[0];j++)
	   if((q[i]&q[j])==0 && (q[i]&(q[j]>>1))==0 && (q[i]&(q[j]<<1))==0)
	     flag[i][j]=1;   
}

void work()
{
  int i,j,k,p,x,y,z;
  for(i=1;i<=q[0];i++)f[1][i][s[q[i]]]=1;
  for(i=2;i<=n;i++)
    for(j=1;j<=q[0];j++)
      for(k=1;k<=q[0];k++)if(flag[j][k])
        for(p=s[q[k]];p<=m;p++)
          f[i][k][p]+=f[i-1][j][p-s[q[k]]];
  long long ans=0;
  for(i=1;i<=q[0];i++)ans+=f[n][i][m];
  printf("%I64d\n",ans);     
}

int main()
{
  freopen("1.in","r",stdin);
  init();
  work();
  return 0; 
}

           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值