深度学习笔记
文章平均质量分 81
yuyu_297
这个作者很懒,什么都没留下…
展开
-
卷积神经网络(CNN)自学笔记2:卷积层
卷积层是卷积神经网络的基本组成之一,主要作用是用于提取图像特征。原创 2024-05-25 21:32:01 · 7306 阅读 · 0 评论 -
卷积神经网络(CNN)自学笔记1:全连接层
全连接层(fully connected layers,FC)是神经网络的一种基本层类型,通常位于网络的最后几层,用于分类任务的输出层。全连接层的主要特点是每一个神经元与前一层的每一个神经元都相连接,这意味着每个输入都影响每个输出。在全连接层中,输入向量通过一个权重矩阵进行线性变换,然后加上一个偏置项,最后通过激活函数(如ReLU、Sigmoid、Tanh等)进行非线性变换。公式表达:其中,为输出向量,为激活函数,为权重矩阵,为偏置向量。原创 2024-05-19 11:21:31 · 11464 阅读 · 3 评论