一、全连接层的定义
全连接层(fully connected layers,FC)是神经网络的一种基本层类型,通常位于网络的最后几层,用于分类任务的输出层。全连接层的主要特点是每一个神经元与前一层的每一个神经元都相连接,这意味着每个输入都影响每个输出。在全连接层中,输入向量通过一个权重矩阵进行线性变换,然后加上一个偏置项,最后通过激活函数(如ReLU、Sigmoid、Tanh等)进行非线性变换。
公式表达:
其中,为输出向量,
为激活函数,
为权重矩阵,
为偏置向量。

全连接层(fully connected layers,FC)是神经网络的一种基本层类型,通常位于网络的最后几层,用于分类任务的输出层。全连接层的主要特点是每一个神经元与前一层的每一个神经元都相连接,这意味着每个输入都影响每个输出。在全连接层中,输入向量通过一个权重矩阵进行线性变换,然后加上一个偏置项,最后通过激活函数(如ReLU、Sigmoid、Tanh等)进行非线性变换。
公式表达:
其中,为输出向量,
为激活函数,
为权重矩阵,
为偏置向量。