卷积神经网络(CNN)自学笔记1:全连接层

一、全连接层的定义

全连接层(fully connected layers,FC)是神经网络的一种基本层类型,通常位于网络的最后几层,用于分类任务的输出层。全连接层的主要特点是每一个神经元与前一层的每一个神经元都相连接,这意味着每个输入都影响每个输出。在全连接层中,输入向量通过一个权重矩阵进行线性变换,然后加上一个偏置项,最后通过激活函数(如ReLU、Sigmoid、Tanh等)进行非线性变换。

公式表达:y=\sigma (w*x+b)

其中,y为输出向量,\sigma为激活函数,w为权重矩阵,b为偏置向量。

图1 多层全连接层的前向传
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值