【小波变换】小波阈值去噪

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

小波阈值去噪有两个关键点:一是阈值的选取,二是阈值函数的选取。

硬阈值法:将信号的绝对值与阈值进行比较,小于阈值的点置为零,其他保持不变
软阈值法:将信号的绝对值和阈值进行比较,小于阈值的点置为零,大于或等于阈值的点则向零收缩,变为该点值与阈值之差

在这里插入图片描述

硬阈值法可以对图像的边缘和细节等局部信息进行保留,但图像会发生局部失真;而软阈值处理则相对平滑 ,但其又使得边缘模糊 、图像失真

在这里插入图片描述

# python实现
import numpy as np
import pywt
data = np.linspace(1, 4, 7)
# array([ 1. ,  1.5,  2. ,  2.5,  3. ,  3.5,  4. ])

# 软阈值法(绝对值与阈值比较,大于缩小,小于置零)
pywt.threshold(data, 2, ‘soft’)
# array([ 0. , 0. , 0. , 0.5, 1. , 1.5, 2. ])
# 硬阈值法(绝对值与阈值比较,大于不变,小于置零)
pywt.threshold(data, 2, ‘hard’)
# array([ 0. , 0. , 2. , 2.5, 3. , 3.5, 4. ])
# greater
pywt.threshold(data, 2, ‘greater’)
# array([ 0. , 0. , 2. , 2.5, 3. , 3.5, 4. ])
# less
pywt.threshold(data, 2, ‘less’)
# array([ 1. , 1.5, 2. , 0. , 0. , 0. , 0. ])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

完整过程可参考:
http://blancosilva.github.io/course-material/2011/01/23/denoising-wavelet-thresholding.html

更多去噪方法可参考:
https://github.com/1273545169/wavelet-transform/blob/master/小波信号去噪.pdf

参考资料:
https://blog.csdn.net/zhang0558/article/details/76019832
https://github.com/1273545169/wavelet-transform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值