最近有项目接触到SAR成像图像,为了对SAR有一个全面的认识,本文结合自身研究经验,从背景到应用做一下简要概述。
背景
SAR(Synthetic Aperture Radar,合成孔径雷达)成像是一种先进的雷达技术,其通过处理和分析由合成孔径雷达发射并接收的回波信号,生成高分辨率的地面图像。这项技术广泛应用于地球观测、环境监测、军事侦察等领域。与传统雷达相同,SAR理论的研究基础还是基于电磁波传播的相关理论,而且主要用到的还是电磁波远场直射、散射等的传播理论,相比于之前雷达的探测与测距功能,SAR由于增加了方位维的信息,并且通过合成孔径技术,实现方位向的聚焦,因此有了成像的功能。
在SAR之前,雷达由于天线波束宽度的限制,在距离很远的情况下,很难保证方位的高分辨,并且不同距离下的方位分辨率不同,因此传统雷达基本不具备成像功能。
针对雷达领域中对探测目标无法成像的技术难题,研究人员结合相控阵天线理论,利用方位维(平台移动方向)上多普勒信号的展宽,通过方位维的脉冲压缩,合成一个虚拟的大孔径天线,实现方位维的高分辨,且在保证实孔径天线能够照射正个合成孔径下,方位分辨率与距离无关,只与天线尺寸有关。由于解决了雷达领域中方位向分辨率差的问题,使得雷达成像成为可能,这样拓宽了雷达的应用面,提升了应用效果。
发展
SAR成像技术起源于20世纪50年代,当时它被用于军事侦查和地图绘制。随着技术的发展和商业化的推动,SAR成像逐渐应用于民用领域,如地质调查、环境监测、农业估产等。同时,随着机载和星载SAR的快速发展,其应用领域已经扩展到全球范围。
技术算法
一般意义上讲,SAR最终处理的数据是射频前端模拟信号通过下变频处理变到基带,然后经过AD采样得到的数字基带信号,并按照快时间、慢时间进行存储。所以各种成像算法也是基于这样的信号模型进行分析设计的。
SAR成像算法的核心是通过对接收到的回波信号进行处理,提取出目标的信息。主要的算法包括距离徙动算法(RD算法)、聚焦束算法等。其中,RD算法是最常用的算法,它通过在距离历程上对回波信号进行加权和累积,从而得到目标的距离像。
另外比较常用的算法包括:BPA、RDA、CSA、wKA(RMA)、PFA。
BPA算法是在距离时域-方位时域上进行处理的,通过对距离脉压后的信号沿着距离徙动曲线进行相干累加得到最终SAR图像,由于计算效率低,工程上很少使用;
RDA利用FFT处理对距离、方位脉压处理,运算量比较大的步骤是距离徙动校正的插值实现过程;
CSA与RDA基本思路一致,不同的是CSA通过CS校正,将所以目标的徙动曲线与参考距离处的徙动曲线一致,然后通过相位相乘统一校正,距离徙动校正效率更高;
wK算法的脉压与前面算法不同,wK算法首先通过二维频域的一致压缩实现图像的粗成像,然后通过在二维频的Stolt插值实现距离方位的耦合;
PFA与wK类似,也是首先经过一个粗成像的步骤,不同的是PFA是在二维时域上进行二维dechirp处理,dechirp后的信号不在是通过时延进行定位,而是通过与参考目标的距离频差、方位频差确定,为此首先需要通过RVP处理将距离维的包络校正到与参考距离的包络位置一致,然后通过距离与方位的插值,去除距离方位之间的耦合,使得距离频差与方位频差之间独立,可以之间通过距离方位傅里叶变换得到只与距离有关的距离频差和只与方位有关的方位频差。
具体算法可以看我的博客SAR系列文章介绍,总体而言,SAR成像算法主要关注以下几点:
成像质量
主要包括:
目标的聚焦性能:目标散不散焦;
分辨率:沿距离、方位的脉压曲线3dB宽度;
副瓣:脉压后的最大副瓣相比于主瓣的值,反映的目标能量的泄露,影响弱散射点的成像,为了降低副瓣,可以利用窗函数通过牺牲分辨率降低旁瓣能量的泄露;
成像效率
由运算量决定,一般BPA算法效率最低,其他四种算法由于都采用了FFT处理降低运算量,所以效率相当,但CSA>wKA>RDA>PFA;
场景适用范围
由算法处理过程近似步骤确定。
BPA算法虽然效率最低,但性能最好、适用范围最广,能够在大场景、大斜视角下适用;
RDA由于进行了小角度进行,所以无法在大斜视角以及大场景下定位,不过目前应该有改进的算法可以在大斜视角使用该算法。
CSA算法与RDA算法基本一致,所以对应的应用限制也一致;
wKA算法和PFA算法都是先经过参考位置进行粗成像的,只是处理的数域不同,一个是二维频域处理的,一个是二维时域上处理的。而参考位置的旋转不受限于斜视角,所以能在大斜视角下进行,但由于wKA中空不变假设以及PFA中平面波近似,所以两者都受限于场景尺寸。
注意:SAR成像关键是距离方位的脉压过程以及距离方位去耦合过程,至于在什么域上处理并没有太多要求,只要在上述三个方面能达到很好的要求即可。
应用
SAR成像技术因其全天候、高分辨率、远距离探测等优点,被广泛应用于以下领域:
地球观测:
SAR成像可以用于地形测绘、土地利用/覆盖调查、地质勘查等。通过获取的高分辨率图像,可以清晰地识别出地形地貌、建筑物、道路等目标。
环境监测:
SAR成像可以用于监测环境污染、生态变化等。通过对图像的分析,可以获取植被覆盖率、水体分布等信息。
军事侦察:
SAR成像可以用于军事侦察和战场监控,提供高分辨率的地面图像,帮助决策者获取敌方部署和行动信息。
农业估产:
SAR成像可以用于农业估产,通过获取的高分辨率图像,可以准确地评估作物的生长状况和产量。
灾害预警:
SAR成像可以用于灾害预警和灾后评估,例如通过获取地震、洪水等灾害后的地面状况,为救援和重建工作提供准确的信息。
科学研究:
SAR成像还可以用于科学研究,例如通过获取的高分辨率地球表面图像,可以深入研究地球表面的变化规律和趋势。
总结
SAR成像技术以其独特的优势和应用领域,已经成为现代遥感技术的关键组成部分。随着科技的不断进步,我们有理由相信,SAR成像技术将在未来发挥更大的作用,为人类社会的发展提供更多的便利和服务。