学而不思则罔,思而不学则殆
题目
描述
给定一个链表,如果链表中存在环,则返回到链表中环的起始节点,如果没有环,返回null。
样例
样例 1:
输入:null,no cycle
输出:no cycle
解释:
链表为空,所以没有环存在。
样例 2:
输入:-21->10->4->5,tail connects to node index 1
输出:10
解释:
最后一个节点5指向下标为1的节点,也就是10,所以环的入口为10。
解析
这道算法题需要用到双指针法
- 假设存在环,那么a点入环点
- 采用双指针法,快指针每次走两步,慢指针每次走一步
- 当慢指针走到a点的时候,快指针早已经入环走了n圈了
- 此时一定会在b点相遇,且慢指针走的环内距离y小于环长R
- 假设链表头部到a的距离为x,a到b的距离为y,环长为R
- 快指针的距离是慢指针的距离的两倍
则存在如下公式:
2
∗
(
x
+
y
)
=
x
+
y
+
n
∗
R
2*(x+y) = x+y+n*R
2∗(x+y)=x+y+n∗R
x
=
n
∗
R
−
y
x= n*R -y
x=n∗R−y
因此从头结点到入环口的距离等于n倍环长减去y的距离,所以设置两个指针,一个指向head,一个指向相遇点,然后同步移动,相遇点即为入环点
代码
public static ListNode detectCycle(ListNode head) {
// write your code here
if (head == null || head.next == null) {
return null;
}
ListNode singleNode = head;
ListNode doubleNode = head.next;
while (singleNode != doubleNode) {
singleNode = singleNode.next;
if (doubleNode.next != null && doubleNode.next.next != null) {
doubleNode = doubleNode.next.next;
} else {
return null;
}
}
System.out.println(singleNode.val + " - " + doubleNode.val);
ListNode singleNode1 = head;
ListNode singleNode2 = singleNode.next;
while (singleNode1 != singleNode2) {
singleNode1 = singleNode1.next;
singleNode2 = singleNode2.next;
}
System.out.println(singleNode1.val + " - " + singleNode2.val);
return singleNode1;
}